| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcrcl.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catcrcl.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
|
catcrcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 4 |
|
elfvne0 |
⊢ ( 𝐹 ∈ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) → 𝐻 ≠ ∅ ) |
| 5 |
|
df-ov |
⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 6 |
4 5
|
eleq2s |
⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 ≠ ∅ ) |
| 7 |
|
fvprc |
⊢ ( ¬ 𝑈 ∈ V → ( CatCat ‘ 𝑈 ) = ∅ ) |
| 8 |
1 7
|
eqtrid |
⊢ ( ¬ 𝑈 ∈ V → 𝐶 = ∅ ) |
| 9 |
|
fveq2 |
⊢ ( 𝐶 = ∅ → ( Hom ‘ 𝐶 ) = ( Hom ‘ ∅ ) ) |
| 10 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
| 11 |
10
|
str0 |
⊢ ∅ = ( Hom ‘ ∅ ) |
| 12 |
9 2 11
|
3eqtr4g |
⊢ ( 𝐶 = ∅ → 𝐻 = ∅ ) |
| 13 |
8 12
|
syl |
⊢ ( ¬ 𝑈 ∈ V → 𝐻 = ∅ ) |
| 14 |
13
|
necon1ai |
⊢ ( 𝐻 ≠ ∅ → 𝑈 ∈ V ) |
| 15 |
3 6 14
|
3syl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |