| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catcrcl.c |
|- C = ( CatCat ` U ) |
| 2 |
|
catcrcl.h |
|- H = ( Hom ` C ) |
| 3 |
|
catcrcl.f |
|- ( ph -> F e. ( X H Y ) ) |
| 4 |
|
elfvne0 |
|- ( F e. ( H ` <. X , Y >. ) -> H =/= (/) ) |
| 5 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
| 6 |
4 5
|
eleq2s |
|- ( F e. ( X H Y ) -> H =/= (/) ) |
| 7 |
|
fvprc |
|- ( -. U e. _V -> ( CatCat ` U ) = (/) ) |
| 8 |
1 7
|
eqtrid |
|- ( -. U e. _V -> C = (/) ) |
| 9 |
|
fveq2 |
|- ( C = (/) -> ( Hom ` C ) = ( Hom ` (/) ) ) |
| 10 |
|
homid |
|- Hom = Slot ( Hom ` ndx ) |
| 11 |
10
|
str0 |
|- (/) = ( Hom ` (/) ) |
| 12 |
9 2 11
|
3eqtr4g |
|- ( C = (/) -> H = (/) ) |
| 13 |
8 12
|
syl |
|- ( -. U e. _V -> H = (/) ) |
| 14 |
13
|
necon1ai |
|- ( H =/= (/) -> U e. _V ) |
| 15 |
3 6 14
|
3syl |
|- ( ph -> U e. _V ) |