Step |
Hyp |
Ref |
Expression |
1 |
|
yoniso.y |
|- Y = ( Yon ` C ) |
2 |
|
yoniso.o |
|- O = ( oppCat ` C ) |
3 |
|
yoniso.s |
|- S = ( SetCat ` U ) |
4 |
|
yoniso.d |
|- D = ( CatCat ` V ) |
5 |
|
yoniso.b |
|- B = ( Base ` D ) |
6 |
|
yoniso.i |
|- I = ( Iso ` D ) |
7 |
|
yoniso.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoniso.e |
|- E = ( Q |`s ran ( 1st ` Y ) ) |
9 |
|
yoniso.v |
|- ( ph -> V e. X ) |
10 |
|
yoniso.c |
|- ( ph -> C e. B ) |
11 |
|
yoniso.u |
|- ( ph -> U e. W ) |
12 |
|
yoniso.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
13 |
|
yoniso.eb |
|- ( ph -> E e. B ) |
14 |
|
yoniso.1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( F ` ( x ( Hom ` C ) y ) ) = y ) |
15 |
|
relfunc |
|- Rel ( C Func Q ) |
16 |
4 5 9
|
catcbas |
|- ( ph -> B = ( V i^i Cat ) ) |
17 |
|
inss2 |
|- ( V i^i Cat ) C_ Cat |
18 |
16 17
|
eqsstrdi |
|- ( ph -> B C_ Cat ) |
19 |
18 10
|
sseldd |
|- ( ph -> C e. Cat ) |
20 |
1 19 2 3 7 11 12
|
yoncl |
|- ( ph -> Y e. ( C Func Q ) ) |
21 |
|
1st2nd |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) |
22 |
15 20 21
|
sylancr |
|- ( ph -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) |
23 |
1 2 3 7 19 11 12
|
yonffth |
|- ( ph -> Y e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
24 |
22 23
|
eqeltrrd |
|- ( ph -> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
25 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
26 |
2
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
27 |
19 26
|
syl |
|- ( ph -> O e. Cat ) |
28 |
3
|
setccat |
|- ( U e. W -> S e. Cat ) |
29 |
11 28
|
syl |
|- ( ph -> S e. Cat ) |
30 |
7 27 29
|
fuccat |
|- ( ph -> Q e. Cat ) |
31 |
|
fvex |
|- ( 1st ` Y ) e. _V |
32 |
31
|
rnex |
|- ran ( 1st ` Y ) e. _V |
33 |
32
|
a1i |
|- ( ph -> ran ( 1st ` Y ) e. _V ) |
34 |
7
|
fucbas |
|- ( O Func S ) = ( Base ` Q ) |
35 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
36 |
15 20 35
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
37 |
25 34 36
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : ( Base ` C ) --> ( O Func S ) ) |
38 |
37
|
ffnd |
|- ( ph -> ( 1st ` Y ) Fn ( Base ` C ) ) |
39 |
|
dffn3 |
|- ( ( 1st ` Y ) Fn ( Base ` C ) <-> ( 1st ` Y ) : ( Base ` C ) --> ran ( 1st ` Y ) ) |
40 |
38 39
|
sylib |
|- ( ph -> ( 1st ` Y ) : ( Base ` C ) --> ran ( 1st ` Y ) ) |
41 |
25 8 30 33 40
|
ffthres2c |
|- ( ph -> ( ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) <-> ( 1st ` Y ) ( ( C Full E ) i^i ( C Faith E ) ) ( 2nd ` Y ) ) ) |
42 |
|
df-br |
|- ( ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) <-> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
43 |
|
df-br |
|- ( ( 1st ` Y ) ( ( C Full E ) i^i ( C Faith E ) ) ( 2nd ` Y ) <-> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full E ) i^i ( C Faith E ) ) ) |
44 |
41 42 43
|
3bitr3g |
|- ( ph -> ( <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) <-> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full E ) i^i ( C Faith E ) ) ) ) |
45 |
24 44
|
mpbid |
|- ( ph -> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full E ) i^i ( C Faith E ) ) ) |
46 |
22 45
|
eqeltrd |
|- ( ph -> Y e. ( ( C Full E ) i^i ( C Faith E ) ) ) |
47 |
|
fveq2 |
|- ( ( ( 1st ` Y ) ` x ) = ( ( 1st ` Y ) ` y ) -> ( 1st ` ( ( 1st ` Y ) ` x ) ) = ( 1st ` ( ( 1st ` Y ) ` y ) ) ) |
48 |
47
|
fveq1d |
|- ( ( ( 1st ` Y ) ` x ) = ( ( 1st ` Y ) ` y ) -> ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) = ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) |
49 |
48
|
fveq2d |
|- ( ( ( 1st ` Y ) ` x ) = ( ( 1st ` Y ) ` y ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) = ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) ) |
50 |
|
simpl |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
51 |
50 50
|
jca |
|- ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x e. ( Base ` C ) /\ x e. ( Base ` C ) ) ) |
52 |
|
eleq1w |
|- ( y = x -> ( y e. ( Base ` C ) <-> x e. ( Base ` C ) ) ) |
53 |
52
|
anbi2d |
|- ( y = x -> ( ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) <-> ( x e. ( Base ` C ) /\ x e. ( Base ` C ) ) ) ) |
54 |
53
|
anbi2d |
|- ( y = x -> ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) <-> ( ph /\ ( x e. ( Base ` C ) /\ x e. ( Base ` C ) ) ) ) ) |
55 |
|
2fveq3 |
|- ( y = x -> ( 1st ` ( ( 1st ` Y ) ` y ) ) = ( 1st ` ( ( 1st ` Y ) ` x ) ) ) |
56 |
55
|
fveq1d |
|- ( y = x -> ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) = ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) |
57 |
56
|
fveq2d |
|- ( y = x -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) = ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) ) |
58 |
|
id |
|- ( y = x -> y = x ) |
59 |
57 58
|
eqeq12d |
|- ( y = x -> ( ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) = y <-> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) = x ) ) |
60 |
54 59
|
imbi12d |
|- ( y = x -> ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) = y ) <-> ( ( ph /\ ( x e. ( Base ` C ) /\ x e. ( Base ` C ) ) ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) = x ) ) ) |
61 |
19
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. Cat ) |
62 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
63 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
64 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
65 |
1 25 61 62 63 64
|
yon11 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) = ( x ( Hom ` C ) y ) ) |
66 |
65
|
fveq2d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) = ( F ` ( x ( Hom ` C ) y ) ) ) |
67 |
66 14
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) = y ) |
68 |
60 67
|
chvarvv |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ x e. ( Base ` C ) ) ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) = x ) |
69 |
51 68
|
sylan2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) = x ) |
70 |
69 67
|
eqeq12d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( F ` ( ( 1st ` ( ( 1st ` Y ) ` x ) ) ` x ) ) = ( F ` ( ( 1st ` ( ( 1st ` Y ) ` y ) ) ` x ) ) <-> x = y ) ) |
71 |
49 70
|
syl5ib |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` Y ) ` x ) = ( ( 1st ` Y ) ` y ) -> x = y ) ) |
72 |
71
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( ( 1st ` Y ) ` x ) = ( ( 1st ` Y ) ` y ) -> x = y ) ) |
73 |
|
dff13 |
|- ( ( 1st ` Y ) : ( Base ` C ) -1-1-> ( O Func S ) <-> ( ( 1st ` Y ) : ( Base ` C ) --> ( O Func S ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( ( 1st ` Y ) ` x ) = ( ( 1st ` Y ) ` y ) -> x = y ) ) ) |
74 |
37 72 73
|
sylanbrc |
|- ( ph -> ( 1st ` Y ) : ( Base ` C ) -1-1-> ( O Func S ) ) |
75 |
|
f1f1orn |
|- ( ( 1st ` Y ) : ( Base ` C ) -1-1-> ( O Func S ) -> ( 1st ` Y ) : ( Base ` C ) -1-1-onto-> ran ( 1st ` Y ) ) |
76 |
74 75
|
syl |
|- ( ph -> ( 1st ` Y ) : ( Base ` C ) -1-1-onto-> ran ( 1st ` Y ) ) |
77 |
37
|
frnd |
|- ( ph -> ran ( 1st ` Y ) C_ ( O Func S ) ) |
78 |
8 34
|
ressbas2 |
|- ( ran ( 1st ` Y ) C_ ( O Func S ) -> ran ( 1st ` Y ) = ( Base ` E ) ) |
79 |
77 78
|
syl |
|- ( ph -> ran ( 1st ` Y ) = ( Base ` E ) ) |
80 |
79
|
f1oeq3d |
|- ( ph -> ( ( 1st ` Y ) : ( Base ` C ) -1-1-onto-> ran ( 1st ` Y ) <-> ( 1st ` Y ) : ( Base ` C ) -1-1-onto-> ( Base ` E ) ) ) |
81 |
76 80
|
mpbid |
|- ( ph -> ( 1st ` Y ) : ( Base ` C ) -1-1-onto-> ( Base ` E ) ) |
82 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
83 |
4 5 25 82 9 10 13 6
|
catciso |
|- ( ph -> ( Y e. ( C I E ) <-> ( Y e. ( ( C Full E ) i^i ( C Faith E ) ) /\ ( 1st ` Y ) : ( Base ` C ) -1-1-onto-> ( Base ` E ) ) ) ) |
84 |
46 81 83
|
mpbir2and |
|- ( ph -> Y e. ( C I E ) ) |