Step |
Hyp |
Ref |
Expression |
1 |
|
yonffth.y |
|- Y = ( Yon ` C ) |
2 |
|
yonffth.o |
|- O = ( oppCat ` C ) |
3 |
|
yonffth.s |
|- S = ( SetCat ` U ) |
4 |
|
yonffth.q |
|- Q = ( O FuncCat S ) |
5 |
|
yonffth.c |
|- ( ph -> C e. Cat ) |
6 |
|
yonffth.u |
|- ( ph -> U e. V ) |
7 |
|
yonffth.h |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
9 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
10 |
|
eqid |
|- ( SetCat ` ( ran ( Homf ` Q ) u. U ) ) = ( SetCat ` ( ran ( Homf ` Q ) u. U ) ) |
11 |
|
eqid |
|- ( HomF ` Q ) = ( HomF ` Q ) |
12 |
|
eqid |
|- ( ( Q Xc. O ) FuncCat ( SetCat ` ( ran ( Homf ` Q ) u. U ) ) ) = ( ( Q Xc. O ) FuncCat ( SetCat ` ( ran ( Homf ` Q ) u. U ) ) ) |
13 |
|
eqid |
|- ( O evalF S ) = ( O evalF S ) |
14 |
|
eqid |
|- ( ( HomF ` Q ) o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) = ( ( HomF ` Q ) o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
15 |
|
fvex |
|- ( Homf ` Q ) e. _V |
16 |
15
|
rnex |
|- ran ( Homf ` Q ) e. _V |
17 |
|
unexg |
|- ( ( ran ( Homf ` Q ) e. _V /\ U e. V ) -> ( ran ( Homf ` Q ) u. U ) e. _V ) |
18 |
16 6 17
|
sylancr |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) e. _V ) |
19 |
|
ssidd |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ ( ran ( Homf ` Q ) u. U ) ) |
20 |
|
eqid |
|- ( f e. ( O Func S ) , x e. ( Base ` C ) |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( ( Id ` C ) ` x ) ) ) ) = ( f e. ( O Func S ) , x e. ( Base ` C ) |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( ( Id ` C ) ` x ) ) ) ) |
21 |
|
eqid |
|- ( Inv ` ( ( Q Xc. O ) FuncCat ( SetCat ` ( ran ( Homf ` Q ) u. U ) ) ) ) = ( Inv ` ( ( Q Xc. O ) FuncCat ( SetCat ` ( ran ( Homf ` Q ) u. U ) ) ) ) |
22 |
|
eqid |
|- ( f e. ( O Func S ) , x e. ( Base ` C ) |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) = ( f e. ( O Func S ) , x e. ( Base ` C ) |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. ( Base ` C ) |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
23 |
1 8 9 2 3 10 4 11 12 13 14 5 18 7 19 20 21 22
|
yonffthlem |
|- ( ph -> Y e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |