Metamath Proof Explorer


Theorem yonffthlem

Description: Lemma for yonffth . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y
|- Y = ( Yon ` C )
yoneda.b
|- B = ( Base ` C )
yoneda.1
|- .1. = ( Id ` C )
yoneda.o
|- O = ( oppCat ` C )
yoneda.s
|- S = ( SetCat ` U )
yoneda.t
|- T = ( SetCat ` V )
yoneda.q
|- Q = ( O FuncCat S )
yoneda.h
|- H = ( HomF ` Q )
yoneda.r
|- R = ( ( Q Xc. O ) FuncCat T )
yoneda.e
|- E = ( O evalF S )
yoneda.z
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) )
yoneda.c
|- ( ph -> C e. Cat )
yoneda.w
|- ( ph -> V e. W )
yoneda.u
|- ( ph -> ran ( Homf ` C ) C_ U )
yoneda.v
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V )
yoneda.m
|- M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) )
yonedainv.i
|- I = ( Inv ` R )
yonedainv.n
|- N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) )
Assertion yonffthlem
|- ( ph -> Y e. ( ( C Full Q ) i^i ( C Faith Q ) ) )

Proof

Step Hyp Ref Expression
1 yoneda.y
 |-  Y = ( Yon ` C )
2 yoneda.b
 |-  B = ( Base ` C )
3 yoneda.1
 |-  .1. = ( Id ` C )
4 yoneda.o
 |-  O = ( oppCat ` C )
5 yoneda.s
 |-  S = ( SetCat ` U )
6 yoneda.t
 |-  T = ( SetCat ` V )
7 yoneda.q
 |-  Q = ( O FuncCat S )
8 yoneda.h
 |-  H = ( HomF ` Q )
9 yoneda.r
 |-  R = ( ( Q Xc. O ) FuncCat T )
10 yoneda.e
 |-  E = ( O evalF S )
11 yoneda.z
 |-  Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) )
12 yoneda.c
 |-  ( ph -> C e. Cat )
13 yoneda.w
 |-  ( ph -> V e. W )
14 yoneda.u
 |-  ( ph -> ran ( Homf ` C ) C_ U )
15 yoneda.v
 |-  ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V )
16 yoneda.m
 |-  M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) )
17 yonedainv.i
 |-  I = ( Inv ` R )
18 yonedainv.n
 |-  N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) )
19 relfunc
 |-  Rel ( C Func Q )
20 15 unssbd
 |-  ( ph -> U C_ V )
21 13 20 ssexd
 |-  ( ph -> U e. _V )
22 1 12 4 5 7 21 14 yoncl
 |-  ( ph -> Y e. ( C Func Q ) )
23 1st2nd
 |-  ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. )
24 19 22 23 sylancr
 |-  ( ph -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. )
25 1st2ndbr
 |-  ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) )
26 19 22 25 sylancr
 |-  ( ph -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) )
27 fveq2
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( N ` v ) = ( N ` <. ( ( 1st ` Y ) ` w ) , z >. ) )
28 df-ov
 |-  ( ( ( 1st ` Y ) ` w ) N z ) = ( N ` <. ( ( 1st ` Y ) ` w ) , z >. )
29 27 28 eqtr4di
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( N ` v ) = ( ( ( 1st ` Y ) ` w ) N z ) )
30 fveq2
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` E ) ` v ) = ( ( 1st ` E ) ` <. ( ( 1st ` Y ) ` w ) , z >. ) )
31 df-ov
 |-  ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) = ( ( 1st ` E ) ` <. ( ( 1st ` Y ) ` w ) , z >. )
32 30 31 eqtr4di
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` E ) ` v ) = ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) )
33 fveq2
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` Z ) ` v ) = ( ( 1st ` Z ) ` <. ( ( 1st ` Y ) ` w ) , z >. ) )
34 df-ov
 |-  ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) = ( ( 1st ` Z ) ` <. ( ( 1st ` Y ) ` w ) , z >. )
35 33 34 eqtr4di
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` Z ) ` v ) = ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) )
36 32 35 oveq12d
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) = ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) )
37 29 36 eleq12d
 |-  ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) <-> ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) ) )
38 9 fucbas
 |-  ( ( Q Xc. O ) Func T ) = ( Base ` R )
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1
 |-  ( ph -> ( Z e. ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) )
40 39 simpld
 |-  ( ph -> Z e. ( ( Q Xc. O ) Func T ) )
41 funcrcl
 |-  ( Z e. ( ( Q Xc. O ) Func T ) -> ( ( Q Xc. O ) e. Cat /\ T e. Cat ) )
42 40 41 syl
 |-  ( ph -> ( ( Q Xc. O ) e. Cat /\ T e. Cat ) )
43 42 simpld
 |-  ( ph -> ( Q Xc. O ) e. Cat )
44 42 simprd
 |-  ( ph -> T e. Cat )
45 9 43 44 fuccat
 |-  ( ph -> R e. Cat )
46 39 simprd
 |-  ( ph -> E e. ( ( Q Xc. O ) Func T ) )
47 eqid
 |-  ( Iso ` R ) = ( Iso ` R )
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 yonedainv
 |-  ( ph -> M ( Z I E ) N )
49 38 17 45 40 46 47 48 inviso2
 |-  ( ph -> N e. ( E ( Iso ` R ) Z ) )
50 eqid
 |-  ( Q Xc. O ) = ( Q Xc. O )
51 7 fucbas
 |-  ( O Func S ) = ( Base ` Q )
52 4 2 oppcbas
 |-  B = ( Base ` O )
53 50 51 52 xpcbas
 |-  ( ( O Func S ) X. B ) = ( Base ` ( Q Xc. O ) )
54 eqid
 |-  ( ( Q Xc. O ) Nat T ) = ( ( Q Xc. O ) Nat T )
55 eqid
 |-  ( Iso ` T ) = ( Iso ` T )
56 9 53 54 46 40 47 55 fuciso
 |-  ( ph -> ( N e. ( E ( Iso ` R ) Z ) <-> ( N e. ( E ( ( Q Xc. O ) Nat T ) Z ) /\ A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) ) ) )
57 49 56 mpbid
 |-  ( ph -> ( N e. ( E ( ( Q Xc. O ) Nat T ) Z ) /\ A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) ) )
58 57 simprd
 |-  ( ph -> A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) )
59 58 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) )
60 2 51 26 funcf1
 |-  ( ph -> ( 1st ` Y ) : B --> ( O Func S ) )
61 60 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` Y ) : B --> ( O Func S ) )
62 simprr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> w e. B )
63 61 62 ffvelrnd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` Y ) ` w ) e. ( O Func S ) )
64 simprl
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> z e. B )
65 63 64 opelxpd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> <. ( ( 1st ` Y ) ` w ) , z >. e. ( ( O Func S ) X. B ) )
66 37 59 65 rspcdva
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) )
67 4 oppccat
 |-  ( C e. Cat -> O e. Cat )
68 12 67 syl
 |-  ( ph -> O e. Cat )
69 68 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> O e. Cat )
70 5 setccat
 |-  ( U e. _V -> S e. Cat )
71 21 70 syl
 |-  ( ph -> S e. Cat )
72 71 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> S e. Cat )
73 10 69 72 52 63 64 evlf1
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) = ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) )
74 12 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> C e. Cat )
75 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
76 1 2 74 62 75 64 yon11
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) = ( z ( Hom ` C ) w ) )
77 73 76 eqtrd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) = ( z ( Hom ` C ) w ) )
78 13 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> V e. W )
79 14 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ran ( Homf ` C ) C_ U )
80 15 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V )
81 1 2 3 4 5 6 7 8 9 10 11 74 78 79 80 63 64 yonedalem21
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) = ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
82 77 81 oveq12d
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) = ( ( z ( Hom ` C ) w ) ( Iso ` T ) ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) )
83 66 82 eleqtrd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( z ( Hom ` C ) w ) ( Iso ` T ) ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) )
84 20 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> U C_ V )
85 eqid
 |-  ( Base ` S ) = ( Base ` S )
86 relfunc
 |-  Rel ( O Func S )
87 1st2ndbr
 |-  ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) )
88 86 63 87 sylancr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) )
89 52 85 88 funcf1
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> ( Base ` S ) )
90 89 64 ffvelrnd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) e. ( Base ` S ) )
91 5 21 setcbas
 |-  ( ph -> U = ( Base ` S ) )
92 91 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> U = ( Base ` S ) )
93 90 92 eleqtrrd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) e. U )
94 76 93 eqeltrrd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( Hom ` C ) w ) e. U )
95 84 94 sseldd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( Hom ` C ) w ) e. V )
96 eqid
 |-  ( Homf ` Q ) = ( Homf ` Q )
97 eqid
 |-  ( O Nat S ) = ( O Nat S )
98 7 97 fuchom
 |-  ( O Nat S ) = ( Hom ` Q )
99 61 64 ffvelrnd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` Y ) ` z ) e. ( O Func S ) )
100 96 51 98 99 63 homfval
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) = ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
101 15 unssad
 |-  ( ph -> ran ( Homf ` Q ) C_ V )
102 101 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ran ( Homf ` Q ) C_ V )
103 96 51 homffn
 |-  ( Homf ` Q ) Fn ( ( O Func S ) X. ( O Func S ) )
104 fnovrn
 |-  ( ( ( Homf ` Q ) Fn ( ( O Func S ) X. ( O Func S ) ) /\ ( ( 1st ` Y ) ` z ) e. ( O Func S ) /\ ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) e. ran ( Homf ` Q ) )
105 103 99 63 104 mp3an2i
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) e. ran ( Homf ` Q ) )
106 102 105 sseldd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) e. V )
107 100 106 eqeltrrd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) e. V )
108 6 78 95 107 55 setciso
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( z ( Hom ` C ) w ) ( Iso ` T ) ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) <-> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) )
109 83 108 mpbid
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
110 74 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> C e. Cat )
111 110 adantr
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> C e. Cat )
112 64 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> z e. B )
113 112 adantr
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> z e. B )
114 simpr
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> y e. B )
115 1 2 111 113 75 114 yon11
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) = ( y ( Hom ` C ) z ) )
116 115 eqcomd
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( y ( Hom ` C ) z ) = ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) )
117 111 adantr
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> C e. Cat )
118 62 ad3antrrr
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> w e. B )
119 113 adantr
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> z e. B )
120 eqid
 |-  ( comp ` C ) = ( comp ` C )
121 114 adantr
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> y e. B )
122 simpr
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> g e. ( y ( Hom ` C ) z ) )
123 simpllr
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> h e. ( z ( Hom ` C ) w ) )
124 1 2 117 118 75 119 120 121 122 123 yon12
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) = ( h ( <. y , z >. ( comp ` C ) w ) g ) )
125 1 2 117 119 75 118 120 121 123 122 yon2
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) = ( h ( <. y , z >. ( comp ` C ) w ) g ) )
126 124 125 eqtr4d
 |-  ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) = ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) )
127 116 126 mpteq12dva
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) = ( g e. ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) |-> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) ) )
128 26 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) )
129 2 75 98 128 64 62 funcf2
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) --> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
130 129 ffvelrnda
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) e. ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
131 97 130 nat1st2nd
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` z ) ) , ( 2nd ` ( ( 1st ` Y ) ` z ) ) >. ( O Nat S ) <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ) )
132 131 adantr
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( z ( 2nd ` Y ) w ) ` h ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` z ) ) , ( 2nd ` ( ( 1st ` Y ) ` z ) ) >. ( O Nat S ) <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ) )
133 eqid
 |-  ( Hom ` S ) = ( Hom ` S )
134 97 132 52 133 114 natcl
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) )
135 21 adantr
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> U e. _V )
136 135 ad2antrr
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> U e. _V )
137 60 ad2antrr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` Y ) : B --> ( O Func S ) )
138 137 112 ffvelrnd
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` Y ) ` z ) e. ( O Func S ) )
139 1st2ndbr
 |-  ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` z ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` z ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` z ) ) )
140 86 138 139 sylancr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` z ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` z ) ) )
141 52 85 140 funcf1
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` z ) ) : B --> ( Base ` S ) )
142 141 ffvelrnda
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) e. ( Base ` S ) )
143 92 ad2antrr
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> U = ( Base ` S ) )
144 142 143 eleqtrrd
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) e. U )
145 89 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> ( Base ` S ) )
146 145 ffvelrnda
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) e. ( Base ` S ) )
147 146 143 eleqtrrd
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) e. U )
148 5 136 133 144 147 elsetchom
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) <-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) : ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) --> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) )
149 134 148 mpbid
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) : ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) --> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) )
150 149 feqmptd
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) = ( g e. ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) |-> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) ) )
151 127 150 eqtr4d
 |-  ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) = ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) )
152 151 mpteq2dva
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( y e. B |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) ) = ( y e. B |-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) )
153 78 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> V e. W )
154 79 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ran ( Homf ` C ) C_ U )
155 80 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V )
156 63 adantr
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` Y ) ` w ) e. ( O Func S ) )
157 76 eleq2d
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( h e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) <-> h e. ( z ( Hom ` C ) w ) ) )
158 157 biimpar
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> h e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) )
159 1 2 3 4 5 6 7 8 9 10 11 110 153 154 155 156 112 18 158 yonedalem4a
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) ) )
160 97 131 52 natfn
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) Fn B )
161 dffn5
 |-  ( ( ( z ( 2nd ` Y ) w ) ` h ) Fn B <-> ( ( z ( 2nd ` Y ) w ) ` h ) = ( y e. B |-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) )
162 160 161 sylib
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) = ( y e. B |-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) )
163 152 159 162 3eqtr4d
 |-  ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) = ( ( z ( 2nd ` Y ) w ) ` h ) )
164 163 mpteq2dva
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( h e. ( z ( Hom ` C ) w ) |-> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) ) = ( h e. ( z ( Hom ` C ) w ) |-> ( ( z ( 2nd ` Y ) w ) ` h ) ) )
165 f1of
 |-  ( ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) --> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
166 109 165 syl
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) --> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
167 166 feqmptd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) = ( h e. ( z ( Hom ` C ) w ) |-> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) ) )
168 129 feqmptd
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( 2nd ` Y ) w ) = ( h e. ( z ( Hom ` C ) w ) |-> ( ( z ( 2nd ` Y ) w ) ` h ) ) )
169 164 167 168 3eqtr4d
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) = ( z ( 2nd ` Y ) w ) )
170 169 f1oeq1d
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) <-> ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) )
171 109 170 mpbid
 |-  ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
172 171 ralrimivva
 |-  ( ph -> A. z e. B A. w e. B ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) )
173 2 75 98 isffth2
 |-  ( ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) <-> ( ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) /\ A. z e. B A. w e. B ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) )
174 26 172 173 sylanbrc
 |-  ( ph -> ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) )
175 df-br
 |-  ( ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) <-> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) )
176 174 175 sylib
 |-  ( ph -> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) )
177 24 176 eqeltrd
 |-  ( ph -> Y e. ( ( C Full Q ) i^i ( C Faith Q ) ) )