Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yoneda.m |
|- M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) ) |
17 |
|
yonedainv.i |
|- I = ( Inv ` R ) |
18 |
|
yonedainv.n |
|- N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
19 |
|
relfunc |
|- Rel ( C Func Q ) |
20 |
15
|
unssbd |
|- ( ph -> U C_ V ) |
21 |
13 20
|
ssexd |
|- ( ph -> U e. _V ) |
22 |
1 12 4 5 7 21 14
|
yoncl |
|- ( ph -> Y e. ( C Func Q ) ) |
23 |
|
1st2nd |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) |
24 |
19 22 23
|
sylancr |
|- ( ph -> Y = <. ( 1st ` Y ) , ( 2nd ` Y ) >. ) |
25 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
26 |
19 22 25
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
27 |
|
fveq2 |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( N ` v ) = ( N ` <. ( ( 1st ` Y ) ` w ) , z >. ) ) |
28 |
|
df-ov |
|- ( ( ( 1st ` Y ) ` w ) N z ) = ( N ` <. ( ( 1st ` Y ) ` w ) , z >. ) |
29 |
27 28
|
eqtr4di |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( N ` v ) = ( ( ( 1st ` Y ) ` w ) N z ) ) |
30 |
|
fveq2 |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` E ) ` v ) = ( ( 1st ` E ) ` <. ( ( 1st ` Y ) ` w ) , z >. ) ) |
31 |
|
df-ov |
|- ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) = ( ( 1st ` E ) ` <. ( ( 1st ` Y ) ` w ) , z >. ) |
32 |
30 31
|
eqtr4di |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` E ) ` v ) = ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ) |
33 |
|
fveq2 |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` Z ) ` v ) = ( ( 1st ` Z ) ` <. ( ( 1st ` Y ) ` w ) , z >. ) ) |
34 |
|
df-ov |
|- ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) = ( ( 1st ` Z ) ` <. ( ( 1st ` Y ) ` w ) , z >. ) |
35 |
33 34
|
eqtr4di |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( 1st ` Z ) ` v ) = ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) |
36 |
32 35
|
oveq12d |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) = ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) ) |
37 |
29 36
|
eleq12d |
|- ( v = <. ( ( 1st ` Y ) ` w ) , z >. -> ( ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) <-> ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) ) ) |
38 |
9
|
fucbas |
|- ( ( Q Xc. O ) Func T ) = ( Base ` R ) |
39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
yonedalem1 |
|- ( ph -> ( Z e. ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) ) |
40 |
39
|
simpld |
|- ( ph -> Z e. ( ( Q Xc. O ) Func T ) ) |
41 |
|
funcrcl |
|- ( Z e. ( ( Q Xc. O ) Func T ) -> ( ( Q Xc. O ) e. Cat /\ T e. Cat ) ) |
42 |
40 41
|
syl |
|- ( ph -> ( ( Q Xc. O ) e. Cat /\ T e. Cat ) ) |
43 |
42
|
simpld |
|- ( ph -> ( Q Xc. O ) e. Cat ) |
44 |
42
|
simprd |
|- ( ph -> T e. Cat ) |
45 |
9 43 44
|
fuccat |
|- ( ph -> R e. Cat ) |
46 |
39
|
simprd |
|- ( ph -> E e. ( ( Q Xc. O ) Func T ) ) |
47 |
|
eqid |
|- ( Iso ` R ) = ( Iso ` R ) |
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
yonedainv |
|- ( ph -> M ( Z I E ) N ) |
49 |
38 17 45 40 46 47 48
|
inviso2 |
|- ( ph -> N e. ( E ( Iso ` R ) Z ) ) |
50 |
|
eqid |
|- ( Q Xc. O ) = ( Q Xc. O ) |
51 |
7
|
fucbas |
|- ( O Func S ) = ( Base ` Q ) |
52 |
4 2
|
oppcbas |
|- B = ( Base ` O ) |
53 |
50 51 52
|
xpcbas |
|- ( ( O Func S ) X. B ) = ( Base ` ( Q Xc. O ) ) |
54 |
|
eqid |
|- ( ( Q Xc. O ) Nat T ) = ( ( Q Xc. O ) Nat T ) |
55 |
|
eqid |
|- ( Iso ` T ) = ( Iso ` T ) |
56 |
9 53 54 46 40 47 55
|
fuciso |
|- ( ph -> ( N e. ( E ( Iso ` R ) Z ) <-> ( N e. ( E ( ( Q Xc. O ) Nat T ) Z ) /\ A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) ) ) ) |
57 |
49 56
|
mpbid |
|- ( ph -> ( N e. ( E ( ( Q Xc. O ) Nat T ) Z ) /\ A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) ) ) |
58 |
57
|
simprd |
|- ( ph -> A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) ) |
59 |
58
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> A. v e. ( ( O Func S ) X. B ) ( N ` v ) e. ( ( ( 1st ` E ) ` v ) ( Iso ` T ) ( ( 1st ` Z ) ` v ) ) ) |
60 |
2 51 26
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : B --> ( O Func S ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` Y ) : B --> ( O Func S ) ) |
62 |
|
simprr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> w e. B ) |
63 |
61 62
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) |
64 |
|
simprl |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> z e. B ) |
65 |
63 64
|
opelxpd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> <. ( ( 1st ` Y ) ` w ) , z >. e. ( ( O Func S ) X. B ) ) |
66 |
37 59 65
|
rspcdva |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) ) |
67 |
4
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
68 |
12 67
|
syl |
|- ( ph -> O e. Cat ) |
69 |
68
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> O e. Cat ) |
70 |
5
|
setccat |
|- ( U e. _V -> S e. Cat ) |
71 |
21 70
|
syl |
|- ( ph -> S e. Cat ) |
72 |
71
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> S e. Cat ) |
73 |
10 69 72 52 63 64
|
evlf1 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) = ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) |
74 |
12
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> C e. Cat ) |
75 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
76 |
1 2 74 62 75 64
|
yon11 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) = ( z ( Hom ` C ) w ) ) |
77 |
73 76
|
eqtrd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) = ( z ( Hom ` C ) w ) ) |
78 |
13
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> V e. W ) |
79 |
14
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ran ( Homf ` C ) C_ U ) |
80 |
15
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
81 |
1 2 3 4 5 6 7 8 9 10 11 74 78 79 80 63 64
|
yonedalem21 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) = ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
82 |
77 81
|
oveq12d |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( 1st ` Y ) ` w ) ( 1st ` E ) z ) ( Iso ` T ) ( ( ( 1st ` Y ) ` w ) ( 1st ` Z ) z ) ) = ( ( z ( Hom ` C ) w ) ( Iso ` T ) ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) ) |
83 |
66 82
|
eleqtrd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( z ( Hom ` C ) w ) ( Iso ` T ) ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) ) |
84 |
20
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> U C_ V ) |
85 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
86 |
|
relfunc |
|- Rel ( O Func S ) |
87 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) ) |
88 |
86 63 87
|
sylancr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) ) |
89 |
52 85 88
|
funcf1 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> ( Base ` S ) ) |
90 |
89 64
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) e. ( Base ` S ) ) |
91 |
5 21
|
setcbas |
|- ( ph -> U = ( Base ` S ) ) |
92 |
91
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> U = ( Base ` S ) ) |
93 |
90 92
|
eleqtrrd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) e. U ) |
94 |
76 93
|
eqeltrrd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( Hom ` C ) w ) e. U ) |
95 |
84 94
|
sseldd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( Hom ` C ) w ) e. V ) |
96 |
|
eqid |
|- ( Homf ` Q ) = ( Homf ` Q ) |
97 |
|
eqid |
|- ( O Nat S ) = ( O Nat S ) |
98 |
7 97
|
fuchom |
|- ( O Nat S ) = ( Hom ` Q ) |
99 |
61 64
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( 1st ` Y ) ` z ) e. ( O Func S ) ) |
100 |
96 51 98 99 63
|
homfval |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) = ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
101 |
15
|
unssad |
|- ( ph -> ran ( Homf ` Q ) C_ V ) |
102 |
101
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ran ( Homf ` Q ) C_ V ) |
103 |
96 51
|
homffn |
|- ( Homf ` Q ) Fn ( ( O Func S ) X. ( O Func S ) ) |
104 |
|
fnovrn |
|- ( ( ( Homf ` Q ) Fn ( ( O Func S ) X. ( O Func S ) ) /\ ( ( 1st ` Y ) ` z ) e. ( O Func S ) /\ ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) e. ran ( Homf ` Q ) ) |
105 |
103 99 63 104
|
mp3an2i |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) e. ran ( Homf ` Q ) ) |
106 |
102 105
|
sseldd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( Homf ` Q ) ( ( 1st ` Y ) ` w ) ) e. V ) |
107 |
100 106
|
eqeltrrd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) e. V ) |
108 |
6 78 95 107 55
|
setciso |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) e. ( ( z ( Hom ` C ) w ) ( Iso ` T ) ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) <-> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) ) |
109 |
83 108
|
mpbid |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
110 |
74
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> C e. Cat ) |
111 |
110
|
adantr |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> C e. Cat ) |
112 |
64
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> z e. B ) |
113 |
112
|
adantr |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> z e. B ) |
114 |
|
simpr |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> y e. B ) |
115 |
1 2 111 113 75 114
|
yon11 |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) = ( y ( Hom ` C ) z ) ) |
116 |
115
|
eqcomd |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( y ( Hom ` C ) z ) = ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) ) |
117 |
111
|
adantr |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> C e. Cat ) |
118 |
62
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> w e. B ) |
119 |
113
|
adantr |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> z e. B ) |
120 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
121 |
114
|
adantr |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> y e. B ) |
122 |
|
simpr |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> g e. ( y ( Hom ` C ) z ) ) |
123 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> h e. ( z ( Hom ` C ) w ) ) |
124 |
1 2 117 118 75 119 120 121 122 123
|
yon12 |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) = ( h ( <. y , z >. ( comp ` C ) w ) g ) ) |
125 |
1 2 117 119 75 118 120 121 123 122
|
yon2 |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) = ( h ( <. y , z >. ( comp ` C ) w ) g ) ) |
126 |
124 125
|
eqtr4d |
|- ( ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) /\ g e. ( y ( Hom ` C ) z ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) = ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) ) |
127 |
116 126
|
mpteq12dva |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) = ( g e. ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) |-> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) ) ) |
128 |
26
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
129 |
2 75 98 128 64 62
|
funcf2 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) --> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
130 |
129
|
ffvelrnda |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) e. ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
131 |
97 130
|
nat1st2nd |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` z ) ) , ( 2nd ` ( ( 1st ` Y ) ` z ) ) >. ( O Nat S ) <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ) ) |
132 |
131
|
adantr |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( z ( 2nd ` Y ) w ) ` h ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` z ) ) , ( 2nd ` ( ( 1st ` Y ) ` z ) ) >. ( O Nat S ) <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ) ) |
133 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
134 |
97 132 52 133 114
|
natcl |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) ) |
135 |
21
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> U e. _V ) |
136 |
135
|
ad2antrr |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> U e. _V ) |
137 |
60
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` Y ) : B --> ( O Func S ) ) |
138 |
137 112
|
ffvelrnd |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` Y ) ` z ) e. ( O Func S ) ) |
139 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` z ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` z ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` z ) ) ) |
140 |
86 138 139
|
sylancr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` z ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` z ) ) ) |
141 |
52 85 140
|
funcf1 |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` z ) ) : B --> ( Base ` S ) ) |
142 |
141
|
ffvelrnda |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) e. ( Base ` S ) ) |
143 |
92
|
ad2antrr |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> U = ( Base ` S ) ) |
144 |
142 143
|
eleqtrrd |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) e. U ) |
145 |
89
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> ( Base ` S ) ) |
146 |
145
|
ffvelrnda |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) e. ( Base ` S ) ) |
147 |
146 143
|
eleqtrrd |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) e. U ) |
148 |
5 136 133 144 147
|
elsetchom |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) <-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) : ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) --> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) ) |
149 |
134 148
|
mpbid |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) : ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) --> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` y ) ) |
150 |
149
|
feqmptd |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) = ( g e. ( ( 1st ` ( ( 1st ` Y ) ` z ) ) ` y ) |-> ( ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ` g ) ) ) |
151 |
127 150
|
eqtr4d |
|- ( ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) /\ y e. B ) -> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) = ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) |
152 |
151
|
mpteq2dva |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( y e. B |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) ) = ( y e. B |-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) ) |
153 |
78
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> V e. W ) |
154 |
79
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ran ( Homf ` C ) C_ U ) |
155 |
80
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
156 |
63
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) |
157 |
76
|
eleq2d |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( h e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) <-> h e. ( z ( Hom ` C ) w ) ) ) |
158 |
157
|
biimpar |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> h e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) |
159 |
1 2 3 4 5 6 7 8 9 10 11 110 153 154 155 156 112 18 158
|
yonedalem4a |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) z ) |-> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` w ) ) y ) ` g ) ` h ) ) ) ) |
160 |
97 131 52
|
natfn |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) Fn B ) |
161 |
|
dffn5 |
|- ( ( ( z ( 2nd ` Y ) w ) ` h ) Fn B <-> ( ( z ( 2nd ` Y ) w ) ` h ) = ( y e. B |-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) ) |
162 |
160 161
|
sylib |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( z ( 2nd ` Y ) w ) ` h ) = ( y e. B |-> ( ( ( z ( 2nd ` Y ) w ) ` h ) ` y ) ) ) |
163 |
152 159 162
|
3eqtr4d |
|- ( ( ( ph /\ ( z e. B /\ w e. B ) ) /\ h e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) = ( ( z ( 2nd ` Y ) w ) ` h ) ) |
164 |
163
|
mpteq2dva |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( h e. ( z ( Hom ` C ) w ) |-> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) ) = ( h e. ( z ( Hom ` C ) w ) |-> ( ( z ( 2nd ` Y ) w ) ` h ) ) ) |
165 |
|
f1of |
|- ( ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) --> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
166 |
109 165
|
syl |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) --> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
167 |
166
|
feqmptd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) = ( h e. ( z ( Hom ` C ) w ) |-> ( ( ( ( 1st ` Y ) ` w ) N z ) ` h ) ) ) |
168 |
129
|
feqmptd |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( 2nd ` Y ) w ) = ( h e. ( z ( Hom ` C ) w ) |-> ( ( z ( 2nd ` Y ) w ) ` h ) ) ) |
169 |
164 167 168
|
3eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( 1st ` Y ) ` w ) N z ) = ( z ( 2nd ` Y ) w ) ) |
170 |
169
|
f1oeq1d |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( ( 1st ` Y ) ` w ) N z ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) <-> ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) ) |
171 |
109 170
|
mpbid |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
172 |
171
|
ralrimivva |
|- ( ph -> A. z e. B A. w e. B ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) |
173 |
2 75 98
|
isffth2 |
|- ( ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) <-> ( ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) /\ A. z e. B A. w e. B ( z ( 2nd ` Y ) w ) : ( z ( Hom ` C ) w ) -1-1-onto-> ( ( ( 1st ` Y ) ` z ) ( O Nat S ) ( ( 1st ` Y ) ` w ) ) ) ) |
174 |
26 172 173
|
sylanbrc |
|- ( ph -> ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) ) |
175 |
|
df-br |
|- ( ( 1st ` Y ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` Y ) <-> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
176 |
174 175
|
sylib |
|- ( ph -> <. ( 1st ` Y ) , ( 2nd ` Y ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
177 |
24 176
|
eqeltrd |
|- ( ph -> Y e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |