Step |
Hyp |
Ref |
Expression |
1 |
|
fuciso.q |
|- Q = ( C FuncCat D ) |
2 |
|
fuciso.b |
|- B = ( Base ` C ) |
3 |
|
fuciso.n |
|- N = ( C Nat D ) |
4 |
|
fuciso.f |
|- ( ph -> F e. ( C Func D ) ) |
5 |
|
fuciso.g |
|- ( ph -> G e. ( C Func D ) ) |
6 |
|
fuciso.i |
|- I = ( Iso ` Q ) |
7 |
|
fuciso.j |
|- J = ( Iso ` D ) |
8 |
1
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
9 |
1 3
|
fuchom |
|- N = ( Hom ` Q ) |
10 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
11 |
4 10
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
12 |
11
|
simpld |
|- ( ph -> C e. Cat ) |
13 |
11
|
simprd |
|- ( ph -> D e. Cat ) |
14 |
1 12 13
|
fuccat |
|- ( ph -> Q e. Cat ) |
15 |
8 9 6 14 4 5
|
isohom |
|- ( ph -> ( F I G ) C_ ( F N G ) ) |
16 |
15
|
sselda |
|- ( ( ph /\ A e. ( F I G ) ) -> A e. ( F N G ) ) |
17 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
18 |
|
eqid |
|- ( Inv ` D ) = ( Inv ` D ) |
19 |
13
|
ad2antrr |
|- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> D e. Cat ) |
20 |
|
relfunc |
|- Rel ( C Func D ) |
21 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
22 |
20 4 21
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
23 |
2 17 22
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ A e. ( F I G ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
25 |
24
|
ffvelrnda |
|- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
26 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
27 |
20 5 26
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
28 |
2 17 27
|
funcf1 |
|- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ A e. ( F I G ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
30 |
29
|
ffvelrnda |
|- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
31 |
|
eqid |
|- ( Inv ` Q ) = ( Inv ` Q ) |
32 |
8 31 14 4 5 6
|
isoval |
|- ( ph -> ( F I G ) = dom ( F ( Inv ` Q ) G ) ) |
33 |
32
|
eleq2d |
|- ( ph -> ( A e. ( F I G ) <-> A e. dom ( F ( Inv ` Q ) G ) ) ) |
34 |
8 31 14 4 5
|
invfun |
|- ( ph -> Fun ( F ( Inv ` Q ) G ) ) |
35 |
|
funfvbrb |
|- ( Fun ( F ( Inv ` Q ) G ) -> ( A e. dom ( F ( Inv ` Q ) G ) <-> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) ) |
36 |
34 35
|
syl |
|- ( ph -> ( A e. dom ( F ( Inv ` Q ) G ) <-> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) ) |
37 |
33 36
|
bitrd |
|- ( ph -> ( A e. ( F I G ) <-> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) ) |
38 |
37
|
biimpa |
|- ( ( ph /\ A e. ( F I G ) ) -> A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) ) |
39 |
1 2 3 4 5 31 18
|
fucinv |
|- ( ph -> ( A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) <-> ( A e. ( F N G ) /\ ( ( F ( Inv ` Q ) G ) ` A ) e. ( G N F ) /\ A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ A e. ( F I G ) ) -> ( A ( F ( Inv ` Q ) G ) ( ( F ( Inv ` Q ) G ) ` A ) <-> ( A e. ( F N G ) /\ ( ( F ( Inv ` Q ) G ) ` A ) e. ( G N F ) /\ A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) ) ) |
41 |
38 40
|
mpbid |
|- ( ( ph /\ A e. ( F I G ) ) -> ( A e. ( F N G ) /\ ( ( F ( Inv ` Q ) G ) ` A ) e. ( G N F ) /\ A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) ) |
42 |
41
|
simp3d |
|- ( ( ph /\ A e. ( F I G ) ) -> A. x e. B ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) |
43 |
42
|
r19.21bi |
|- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( A ` x ) ( ( ( 1st ` F ) ` x ) ( Inv ` D ) ( ( 1st ` G ) ` x ) ) ( ( ( F ( Inv ` Q ) G ) ` A ) ` x ) ) |
44 |
17 18 19 25 30 7 43
|
inviso1 |
|- ( ( ( ph /\ A e. ( F I G ) ) /\ x e. B ) -> ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) |
45 |
44
|
ralrimiva |
|- ( ( ph /\ A e. ( F I G ) ) -> A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) |
46 |
16 45
|
jca |
|- ( ( ph /\ A e. ( F I G ) ) -> ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) |
47 |
14
|
adantr |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> Q e. Cat ) |
48 |
4
|
adantr |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> F e. ( C Func D ) ) |
49 |
5
|
adantr |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> G e. ( C Func D ) ) |
50 |
|
simprl |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A e. ( F N G ) ) |
51 |
13
|
ad2antrr |
|- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> D e. Cat ) |
52 |
23
|
adantr |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
53 |
52
|
ffvelrnda |
|- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
54 |
28
|
adantr |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
55 |
54
|
ffvelrnda |
|- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
56 |
|
simprr |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) |
57 |
|
fveq2 |
|- ( x = y -> ( A ` x ) = ( A ` y ) ) |
58 |
|
fveq2 |
|- ( x = y -> ( ( 1st ` F ) ` x ) = ( ( 1st ` F ) ` y ) ) |
59 |
|
fveq2 |
|- ( x = y -> ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` y ) ) |
60 |
58 59
|
oveq12d |
|- ( x = y -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) = ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
61 |
57 60
|
eleq12d |
|- ( x = y -> ( ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) <-> ( A ` y ) e. ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) ) |
62 |
61
|
rspccva |
|- ( ( A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ y e. B ) -> ( A ` y ) e. ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
63 |
56 62
|
sylan |
|- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( A ` y ) e. ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
64 |
17 7 18 51 53 55 63
|
invisoinvr |
|- ( ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) /\ y e. B ) -> ( A ` y ) ( ( ( 1st ` F ) ` y ) ( Inv ` D ) ( ( 1st ` G ) ` y ) ) ( ( ( ( 1st ` F ) ` y ) ( Inv ` D ) ( ( 1st ` G ) ` y ) ) ` ( A ` y ) ) ) |
65 |
1 2 3 48 49 31 18 50 64
|
invfuc |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A ( F ( Inv ` Q ) G ) ( y e. B |-> ( ( ( ( 1st ` F ) ` y ) ( Inv ` D ) ( ( 1st ` G ) ` y ) ) ` ( A ` y ) ) ) ) |
66 |
8 31 47 48 49 6 65
|
inviso1 |
|- ( ( ph /\ ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) -> A e. ( F I G ) ) |
67 |
46 66
|
impbida |
|- ( ph -> ( A e. ( F I G ) <-> ( A e. ( F N G ) /\ A. x e. B ( A ` x ) e. ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ) ) ) |