Step |
Hyp |
Ref |
Expression |
1 |
|
fuciso.q |
|- Q = ( C FuncCat D ) |
2 |
|
fuciso.b |
|- B = ( Base ` C ) |
3 |
|
fuciso.n |
|- N = ( C Nat D ) |
4 |
|
fuciso.f |
|- ( ph -> F e. ( C Func D ) ) |
5 |
|
fuciso.g |
|- ( ph -> G e. ( C Func D ) ) |
6 |
|
fucinv.i |
|- I = ( Inv ` Q ) |
7 |
|
fucinv.j |
|- J = ( Inv ` D ) |
8 |
|
invfuc.u |
|- ( ph -> U e. ( F N G ) ) |
9 |
|
invfuc.v |
|- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) X ) |
10 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
11 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
12 |
4 11
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
13 |
12
|
simprd |
|- ( ph -> D e. Cat ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. B ) -> D e. Cat ) |
15 |
|
relfunc |
|- Rel ( C Func D ) |
16 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
17 |
15 4 16
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
18 |
2 10 17
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
19 |
18
|
ffvelrnda |
|- ( ( ph /\ x e. B ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
20 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
21 |
15 5 20
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
22 |
2 10 21
|
funcf1 |
|- ( ph -> ( 1st ` G ) : B --> ( Base ` D ) ) |
23 |
22
|
ffvelrnda |
|- ( ( ph /\ x e. B ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
24 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
25 |
10 7 14 19 23 24
|
invss |
|- ( ( ph /\ x e. B ) -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) C_ ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
26 |
25
|
ssbrd |
|- ( ( ph /\ x e. B ) -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) X -> ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X ) ) |
27 |
9 26
|
mpd |
|- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X ) |
28 |
|
brxp |
|- ( ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X <-> ( ( U ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) /\ X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
29 |
28
|
simprbi |
|- ( ( U ` x ) ( ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) X. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) X -> X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
30 |
27 29
|
syl |
|- ( ( ph /\ x e. B ) -> X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
31 |
30
|
ralrimiva |
|- ( ph -> A. x e. B X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
32 |
2
|
fvexi |
|- B e. _V |
33 |
|
mptelixpg |
|- ( B e. _V -> ( ( x e. B |-> X ) e. X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. B X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
34 |
32 33
|
ax-mp |
|- ( ( x e. B |-> X ) e. X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. B X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
35 |
31 34
|
sylibr |
|- ( ph -> ( x e. B |-> X ) e. X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
36 |
|
fveq2 |
|- ( x = y -> ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` y ) ) |
37 |
|
fveq2 |
|- ( x = y -> ( ( 1st ` F ) ` x ) = ( ( 1st ` F ) ` y ) ) |
38 |
36 37
|
oveq12d |
|- ( x = y -> ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) = ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
39 |
38
|
cbvixpv |
|- X_ x e. B ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) = X_ y e. B ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) |
40 |
35 39
|
eleqtrdi |
|- ( ph -> ( x e. B |-> X ) e. X_ y e. B ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
41 |
|
simpr2 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> z e. B ) |
42 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
43 |
|
eqid |
|- ( x e. B |-> X ) = ( x e. B |-> X ) |
44 |
43
|
fvmpt2 |
|- ( ( x e. B /\ X e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) -> ( ( x e. B |-> X ) ` x ) = X ) |
45 |
42 30 44
|
syl2anc |
|- ( ( ph /\ x e. B ) -> ( ( x e. B |-> X ) ` x ) = X ) |
46 |
9 45
|
breqtrrd |
|- ( ( ph /\ x e. B ) -> ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) ) |
47 |
46
|
ralrimiva |
|- ( ph -> A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) ) |
49 |
|
nfcv |
|- F/_ x ( U ` z ) |
50 |
|
nfcv |
|- F/_ x ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) |
51 |
|
nffvmpt1 |
|- F/_ x ( ( x e. B |-> X ) ` z ) |
52 |
49 50 51
|
nfbr |
|- F/ x ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) |
53 |
|
fveq2 |
|- ( x = z -> ( U ` x ) = ( U ` z ) ) |
54 |
|
fveq2 |
|- ( x = z -> ( ( 1st ` F ) ` x ) = ( ( 1st ` F ) ` z ) ) |
55 |
|
fveq2 |
|- ( x = z -> ( ( 1st ` G ) ` x ) = ( ( 1st ` G ) ` z ) ) |
56 |
54 55
|
oveq12d |
|- ( x = z -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) = ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ) |
57 |
|
fveq2 |
|- ( x = z -> ( ( x e. B |-> X ) ` x ) = ( ( x e. B |-> X ) ` z ) ) |
58 |
53 56 57
|
breq123d |
|- ( x = z -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) <-> ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) ) |
59 |
52 58
|
rspc |
|- ( z e. B -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) -> ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) ) |
60 |
41 48 59
|
sylc |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) |
61 |
13
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> D e. Cat ) |
62 |
18
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` F ) : B --> ( Base ` D ) ) |
63 |
62 41
|
ffvelrnd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` z ) e. ( Base ` D ) ) |
64 |
22
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` G ) : B --> ( Base ` D ) ) |
65 |
64 41
|
ffvelrnd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` z ) e. ( Base ` D ) ) |
66 |
|
eqid |
|- ( Sect ` D ) = ( Sect ` D ) |
67 |
10 7 61 63 65 66
|
isinv |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) J ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) <-> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) /\ ( ( x e. B |-> X ) ` z ) ( ( ( 1st ` G ) ` z ) ( Sect ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ) ) |
68 |
60 67
|
mpbid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) /\ ( ( x e. B |-> X ) ` z ) ( ( ( 1st ` G ) ` z ) ( Sect ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ) |
69 |
68
|
simpld |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) ) |
70 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
71 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
72 |
10 24 70 71 66 61 63 65
|
issect |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( ( ( 1st ` F ) ` z ) ( Sect ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` z ) <-> ( ( U ` z ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) /\ ( ( x e. B |-> X ) ` z ) e. ( ( ( 1st ` G ) ` z ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ) ) ) |
73 |
69 72
|
mpbid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) /\ ( ( x e. B |-> X ) ` z ) e. ( ( ( 1st ` G ) ` z ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) /\ ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ) ) |
74 |
73
|
simp3d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ) |
75 |
74
|
oveq1d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) |
76 |
|
simpr1 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> y e. B ) |
77 |
62 76
|
ffvelrnd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
78 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
79 |
17
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
80 |
2 78 24 79 76 41
|
funcf2 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( y ( 2nd ` F ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
81 |
|
simpr3 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> f e. ( y ( Hom ` C ) z ) ) |
82 |
80 81
|
ffvelrnd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` f ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
83 |
10 24 71 61 77 70 63 82
|
catlid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( Id ` D ) ` ( ( 1st ` F ) ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( y ( 2nd ` F ) z ) ` f ) ) |
84 |
75 83
|
eqtr2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` f ) = ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) |
85 |
8
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> U e. ( F N G ) ) |
86 |
3 85
|
nat1st2nd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> U e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
87 |
3 86 2 24 41
|
natcl |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` z ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
88 |
73
|
simp2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( x e. B |-> X ) ` z ) e. ( ( ( 1st ` G ) ` z ) ( Hom ` D ) ( ( 1st ` F ) ` z ) ) ) |
89 |
10 24 70 61 77 63 65 82 87 63 88
|
catass |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` z ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( U ` z ) ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( U ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) ) |
90 |
3 86 2 78 70 76 41 81
|
nati |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) = ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) |
91 |
90
|
oveq2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( U ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` F ) ` z ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( y ( 2nd ` F ) z ) ` f ) ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ) |
92 |
84 89 91
|
3eqtrd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` F ) z ) ` f ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ) |
93 |
92
|
oveq1d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) |
94 |
64 76
|
ffvelrnd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
95 |
|
nfcv |
|- F/_ x ( U ` y ) |
96 |
|
nfcv |
|- F/_ x ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) |
97 |
|
nffvmpt1 |
|- F/_ x ( ( x e. B |-> X ) ` y ) |
98 |
95 96 97
|
nfbr |
|- F/ x ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) |
99 |
|
fveq2 |
|- ( x = y -> ( U ` x ) = ( U ` y ) ) |
100 |
37 36
|
oveq12d |
|- ( x = y -> ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) = ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ) |
101 |
|
fveq2 |
|- ( x = y -> ( ( x e. B |-> X ) ` x ) = ( ( x e. B |-> X ) ` y ) ) |
102 |
99 100 101
|
breq123d |
|- ( x = y -> ( ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) <-> ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) |
103 |
98 102
|
rspc |
|- ( y e. B -> ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) -> ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) |
104 |
76 48 103
|
sylc |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) |
105 |
10 7 61 77 94 66
|
isinv |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) <-> ( ( U ` y ) ( ( ( 1st ` F ) ` y ) ( Sect ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) /\ ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) ) ) ) |
106 |
104 105
|
mpbid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` y ) ( ( ( 1st ` F ) ` y ) ( Sect ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) /\ ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) ) ) |
107 |
106
|
simprd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) ) |
108 |
10 24 70 71 66 61 94 77
|
issect |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` y ) ( ( ( 1st ` G ) ` y ) ( Sect ` D ) ( ( 1st ` F ) ` y ) ) ( U ` y ) <-> ( ( ( x e. B |-> X ) ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) /\ ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) /\ ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) ) ) |
109 |
107 108
|
mpbid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) /\ ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) /\ ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) ) |
110 |
109
|
simp1d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( x e. B |-> X ) ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
111 |
109
|
simp2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
112 |
21
|
adantr |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
113 |
2 78 24 112 76 41
|
funcf2 |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( y ( 2nd ` G ) z ) : ( y ( Hom ` C ) z ) --> ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
114 |
113 81
|
ffvelrnd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( y ( 2nd ` G ) z ) ` f ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
115 |
10 24 70 61 77 94 65 111 114
|
catcocl |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` z ) ) ) |
116 |
10 24 70 61 94 77 65 110 115 63 88
|
catass |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) ) |
117 |
3 86 2 24 76
|
natcl |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( U ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
118 |
10 24 70 61 94 77 94 110 117 65 114
|
catass |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) ) |
119 |
109
|
simp3d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) |
120 |
119
|
oveq2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( U ` y ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) = ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) ) |
121 |
10 24 71 61 94 70 65 114
|
catrid |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( Id ` D ) ` ( ( 1st ` G ) ` y ) ) ) = ( ( y ( 2nd ` G ) z ) ` f ) ) |
122 |
118 120 121
|
3eqtrd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) = ( ( y ( 2nd ` G ) z ) ` f ) ) |
123 |
122
|
oveq2d |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( ( ( y ( 2nd ` G ) z ) ` f ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( U ` y ) ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) = ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) ) |
124 |
93 116 123
|
3eqtrrd |
|- ( ( ph /\ ( y e. B /\ z e. B /\ f e. ( y ( Hom ` C ) z ) ) ) -> ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) |
125 |
124
|
ralrimivvva |
|- ( ph -> A. y e. B A. z e. B A. f e. ( y ( Hom ` C ) z ) ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) |
126 |
3 2 78 24 70 5 4
|
isnat2 |
|- ( ph -> ( ( x e. B |-> X ) e. ( G N F ) <-> ( ( x e. B |-> X ) e. X_ y e. B ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) /\ A. y e. B A. z e. B A. f e. ( y ( Hom ` C ) z ) ( ( ( x e. B |-> X ) ` z ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` G ) ` z ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( y ( 2nd ` G ) z ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` f ) ( <. ( ( 1st ` G ) ` y ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x e. B |-> X ) ` y ) ) ) ) ) |
127 |
40 125 126
|
mpbir2and |
|- ( ph -> ( x e. B |-> X ) e. ( G N F ) ) |
128 |
|
nfv |
|- F/ y ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) |
129 |
128 98 102
|
cbvralw |
|- ( A. x e. B ( U ` x ) ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) ( ( x e. B |-> X ) ` x ) <-> A. y e. B ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) |
130 |
47 129
|
sylib |
|- ( ph -> A. y e. B ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) |
131 |
1 2 3 4 5 6 7
|
fucinv |
|- ( ph -> ( U ( F I G ) ( x e. B |-> X ) <-> ( U e. ( F N G ) /\ ( x e. B |-> X ) e. ( G N F ) /\ A. y e. B ( U ` y ) ( ( ( 1st ` F ) ` y ) J ( ( 1st ` G ) ` y ) ) ( ( x e. B |-> X ) ` y ) ) ) ) |
132 |
8 127 130 131
|
mpbir3and |
|- ( ph -> U ( F I G ) ( x e. B |-> X ) ) |