Metamath Proof Explorer


Theorem invfuc

Description: If V ( x ) is an inverse to U ( x ) for each x , and U is a natural transformation, then V is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
fuciso.b 𝐵 = ( Base ‘ 𝐶 )
fuciso.n 𝑁 = ( 𝐶 Nat 𝐷 )
fuciso.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
fuciso.g ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
fucinv.i 𝐼 = ( Inv ‘ 𝑄 )
fucinv.j 𝐽 = ( Inv ‘ 𝐷 )
invfuc.u ( 𝜑𝑈 ∈ ( 𝐹 𝑁 𝐺 ) )
invfuc.v ( ( 𝜑𝑥𝐵 ) → ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) 𝑋 )
Assertion invfuc ( 𝜑𝑈 ( 𝐹 𝐼 𝐺 ) ( 𝑥𝐵𝑋 ) )

Proof

Step Hyp Ref Expression
1 fuciso.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
2 fuciso.b 𝐵 = ( Base ‘ 𝐶 )
3 fuciso.n 𝑁 = ( 𝐶 Nat 𝐷 )
4 fuciso.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 fuciso.g ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
6 fucinv.i 𝐼 = ( Inv ‘ 𝑄 )
7 fucinv.j 𝐽 = ( Inv ‘ 𝐷 )
8 invfuc.u ( 𝜑𝑈 ∈ ( 𝐹 𝑁 𝐺 ) )
9 invfuc.v ( ( 𝜑𝑥𝐵 ) → ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) 𝑋 )
10 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
11 funcrcl ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
12 4 11 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
13 12 simprd ( 𝜑𝐷 ∈ Cat )
14 13 adantr ( ( 𝜑𝑥𝐵 ) → 𝐷 ∈ Cat )
15 relfunc Rel ( 𝐶 Func 𝐷 )
16 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
17 15 4 16 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
18 2 10 17 funcf1 ( 𝜑 → ( 1st𝐹 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
19 18 ffvelrnda ( ( 𝜑𝑥𝐵 ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
20 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
21 15 5 20 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
22 2 10 21 funcf1 ( 𝜑 → ( 1st𝐺 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
23 22 ffvelrnda ( ( 𝜑𝑥𝐵 ) → ( ( 1st𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
24 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
25 10 7 14 19 23 24 invss ( ( 𝜑𝑥𝐵 ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ⊆ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) × ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
26 25 ssbrd ( ( 𝜑𝑥𝐵 ) → ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) 𝑋 → ( 𝑈𝑥 ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) × ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) 𝑋 ) )
27 9 26 mpd ( ( 𝜑𝑥𝐵 ) → ( 𝑈𝑥 ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) × ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) 𝑋 )
28 brxp ( ( 𝑈𝑥 ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) × ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) 𝑋 ↔ ( ( 𝑈𝑥 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ∧ 𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
29 28 simprbi ( ( 𝑈𝑥 ) ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) × ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) 𝑋𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
30 27 29 syl ( ( 𝜑𝑥𝐵 ) → 𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
31 30 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
32 2 fvexi 𝐵 ∈ V
33 mptelixpg ( 𝐵 ∈ V → ( ( 𝑥𝐵𝑋 ) ∈ X 𝑥𝐵 ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥𝐵 𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) )
34 32 33 ax-mp ( ( 𝑥𝐵𝑋 ) ∈ X 𝑥𝐵 ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥𝐵 𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
35 31 34 sylibr ( 𝜑 → ( 𝑥𝐵𝑋 ) ∈ X 𝑥𝐵 ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
36 fveq2 ( 𝑥 = 𝑦 → ( ( 1st𝐺 ) ‘ 𝑥 ) = ( ( 1st𝐺 ) ‘ 𝑦 ) )
37 fveq2 ( 𝑥 = 𝑦 → ( ( 1st𝐹 ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ 𝑦 ) )
38 36 37 oveq12d ( 𝑥 = 𝑦 → ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) = ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
39 38 cbvixpv X 𝑥𝐵 ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) = X 𝑦𝐵 ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) )
40 35 39 eleqtrdi ( 𝜑 → ( 𝑥𝐵𝑋 ) ∈ X 𝑦𝐵 ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
41 simpr2 ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧𝐵 )
42 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
43 eqid ( 𝑥𝐵𝑋 ) = ( 𝑥𝐵𝑋 )
44 43 fvmpt2 ( ( 𝑥𝐵𝑋 ∈ ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ) → ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) = 𝑋 )
45 42 30 44 syl2anc ( ( 𝜑𝑥𝐵 ) → ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) = 𝑋 )
46 9 45 breqtrrd ( ( 𝜑𝑥𝐵 ) → ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) )
47 46 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) )
48 47 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) )
49 nfcv 𝑥 ( 𝑈𝑧 )
50 nfcv 𝑥 ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) )
51 nffvmpt1 𝑥 ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 )
52 49 50 51 nfbr 𝑥 ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 )
53 fveq2 ( 𝑥 = 𝑧 → ( 𝑈𝑥 ) = ( 𝑈𝑧 ) )
54 fveq2 ( 𝑥 = 𝑧 → ( ( 1st𝐹 ) ‘ 𝑥 ) = ( ( 1st𝐹 ) ‘ 𝑧 ) )
55 fveq2 ( 𝑥 = 𝑧 → ( ( 1st𝐺 ) ‘ 𝑥 ) = ( ( 1st𝐺 ) ‘ 𝑧 ) )
56 54 55 oveq12d ( 𝑥 = 𝑧 → ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) = ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) ) )
57 fveq2 ( 𝑥 = 𝑧 → ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) )
58 53 56 57 breq123d ( 𝑥 = 𝑧 → ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) ↔ ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ) )
59 52 58 rspc ( 𝑧𝐵 → ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) → ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ) )
60 41 48 59 sylc ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) )
61 13 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐷 ∈ Cat )
62 18 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st𝐹 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
63 62 41 ffvelrnd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) )
64 22 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st𝐺 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
65 64 41 ffvelrnd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st𝐺 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) )
66 eqid ( Sect ‘ 𝐷 ) = ( Sect ‘ 𝐷 )
67 10 7 61 63 65 66 isinv ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ↔ ( ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ∧ ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ( ( 1st𝐺 ) ‘ 𝑧 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) ) )
68 60 67 mpbid ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ∧ ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ( ( 1st𝐺 ) ‘ 𝑧 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) )
69 68 simpld ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) )
70 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
71 eqid ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 )
72 10 24 70 71 66 61 63 65 issect ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑧 ) ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ↔ ( ( 𝑈𝑧 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ∧ ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ∧ ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑧 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑧 ) ) ) ) )
73 69 72 mpbid ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑧 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ∧ ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ∧ ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑧 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑧 ) ) ) )
74 73 simp3d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑧 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑧 ) ) )
75 74 oveq1d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑧 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) )
76 simpr1 ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦𝐵 )
77 62 76 ffvelrnd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) )
78 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
79 17 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
80 2 78 24 79 76 41 funcf2 ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑦 ( 2nd𝐹 ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) )
81 simpr3 ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
82 80 81 ffvelrnd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) )
83 10 24 71 61 77 70 63 82 catlid ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) )
84 75 83 eqtr2d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) = ( ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑧 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) )
85 8 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) )
86 3 85 nat1st2nd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑈 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ 𝑁 ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
87 3 86 2 24 41 natcl ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈𝑧 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) )
88 73 simp2d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑧 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) )
89 10 24 70 61 77 63 65 82 87 63 88 catass ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑧 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( 𝑈𝑧 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑈𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) ) )
90 3 86 2 78 70 76 41 81 nati ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) )
91 90 oveq2d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑈𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ) ) = ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ) )
92 84 89 91 3eqtrd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) = ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ) )
93 92 oveq1d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) )
94 64 76 ffvelrnd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) )
95 nfcv 𝑥 ( 𝑈𝑦 )
96 nfcv 𝑥 ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) )
97 nffvmpt1 𝑥 ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 )
98 95 96 97 nfbr 𝑥 ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 )
99 fveq2 ( 𝑥 = 𝑦 → ( 𝑈𝑥 ) = ( 𝑈𝑦 ) )
100 37 36 oveq12d ( 𝑥 = 𝑦 → ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) = ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
101 fveq2 ( 𝑥 = 𝑦 → ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) = ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) )
102 99 100 101 breq123d ( 𝑥 = 𝑦 → ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) ↔ ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) )
103 98 102 rspc ( 𝑦𝐵 → ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) → ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) )
104 76 48 103 sylc ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) )
105 10 7 61 77 94 66 isinv ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ↔ ( ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ∧ ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ( 𝑈𝑦 ) ) ) )
106 104 105 mpbid ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ∧ ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ( 𝑈𝑦 ) ) )
107 106 simprd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ( 𝑈𝑦 ) )
108 10 24 70 71 66 61 94 77 issect ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ( 𝑈𝑦 ) ↔ ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∧ ( 𝑈𝑦 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐺 ) ‘ 𝑦 ) ) ) ) )
109 107 108 mpbid ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∧ ( 𝑈𝑦 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ∧ ( ( 𝑈𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐺 ) ‘ 𝑦 ) ) ) )
110 109 simp1d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
111 109 simp2d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈𝑦 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
112 21 adantr ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
113 2 78 24 112 76 41 funcf2 ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑦 ( 2nd𝐺 ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ⟶ ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) )
114 113 81 ffvelrnd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) )
115 10 24 70 61 77 94 65 111 114 catcocl ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) )
116 10 24 70 61 94 77 65 110 115 63 88 catass ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) ) )
117 3 86 2 24 76 natcl ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈𝑦 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
118 10 24 70 61 94 77 94 110 117 65 114 catass ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑈𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) ) )
119 109 simp3d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑈𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐺 ) ‘ 𝑦 ) ) )
120 119 oveq2d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑈𝑦 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) ) = ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐺 ) ‘ 𝑦 ) ) ) )
121 10 24 71 61 94 70 65 114 catrid ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( Id ‘ 𝐷 ) ‘ ( ( 1st𝐺 ) ‘ 𝑦 ) ) ) = ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) )
122 118 120 121 3eqtrd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) = ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) )
123 122 oveq2d ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( 𝑈𝑦 ) ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) ) = ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ) )
124 93 116 123 3eqtrrd ( ( 𝜑 ∧ ( 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) )
125 124 ralrimivvva ( 𝜑 → ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) )
126 3 2 78 24 70 5 4 isnat2 ( 𝜑 → ( ( 𝑥𝐵𝑋 ) ∈ ( 𝐺 𝑁 𝐹 ) ↔ ( ( 𝑥𝐵𝑋 ) ∈ X 𝑦𝐵 ( ( ( 1st𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( ( 𝑥𝐵𝑋 ) ‘ 𝑧 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐺 ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑦 ( 2nd𝐺 ) 𝑧 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 ( 2nd𝐹 ) 𝑧 ) ‘ 𝑓 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑦 ) , ( ( 1st𝐹 ) ‘ 𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) ) ) )
127 40 125 126 mpbir2and ( 𝜑 → ( 𝑥𝐵𝑋 ) ∈ ( 𝐺 𝑁 𝐹 ) )
128 nfv 𝑦 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 )
129 128 98 102 cbvralw ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑥 ) ↔ ∀ 𝑦𝐵 ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) )
130 47 129 sylib ( 𝜑 → ∀ 𝑦𝐵 ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) )
131 1 2 3 4 5 6 7 fucinv ( 𝜑 → ( 𝑈 ( 𝐹 𝐼 𝐺 ) ( 𝑥𝐵𝑋 ) ↔ ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ( 𝑥𝐵𝑋 ) ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑦𝐵 ( 𝑈𝑦 ) ( ( ( 1st𝐹 ) ‘ 𝑦 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑦 ) ) ( ( 𝑥𝐵𝑋 ) ‘ 𝑦 ) ) ) )
132 8 127 130 131 mpbir3and ( 𝜑𝑈 ( 𝐹 𝐼 𝐺 ) ( 𝑥𝐵𝑋 ) )