Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | breq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| breq123d.2 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | ||
| breq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | breq123d | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑆 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | breq123d.2 | ⊢ ( 𝜑 → 𝑅 = 𝑆 ) | |
| 3 | breq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 4 | 1 3 | breq12d | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑅 𝐷 ) ) |
| 5 | 2 | breqd | ⊢ ( 𝜑 → ( 𝐵 𝑅 𝐷 ↔ 𝐵 𝑆 𝐷 ) ) |
| 6 | 4 5 | bitrd | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐶 ↔ 𝐵 𝑆 𝐷 ) ) |