Metamath Proof Explorer


Theorem fucinv

Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
fuciso.b 𝐵 = ( Base ‘ 𝐶 )
fuciso.n 𝑁 = ( 𝐶 Nat 𝐷 )
fuciso.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
fuciso.g ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
fucinv.i 𝐼 = ( Inv ‘ 𝑄 )
fucinv.j 𝐽 = ( Inv ‘ 𝐷 )
Assertion fucinv ( 𝜑 → ( 𝑈 ( 𝐹 𝐼 𝐺 ) 𝑉 ↔ ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 fuciso.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
2 fuciso.b 𝐵 = ( Base ‘ 𝐶 )
3 fuciso.n 𝑁 = ( 𝐶 Nat 𝐷 )
4 fuciso.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 fuciso.g ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
6 fucinv.i 𝐼 = ( Inv ‘ 𝑄 )
7 fucinv.j 𝐽 = ( Inv ‘ 𝐷 )
8 eqid ( Sect ‘ 𝑄 ) = ( Sect ‘ 𝑄 )
9 eqid ( Sect ‘ 𝐷 ) = ( Sect ‘ 𝐷 )
10 1 2 3 4 5 8 9 fucsect ( 𝜑 → ( 𝑈 ( 𝐹 ( Sect ‘ 𝑄 ) 𝐺 ) 𝑉 ↔ ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ) )
11 1 2 3 5 4 8 9 fucsect ( 𝜑 → ( 𝑉 ( 𝐺 ( Sect ‘ 𝑄 ) 𝐹 ) 𝑈 ↔ ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
12 10 11 anbi12d ( 𝜑 → ( ( 𝑈 ( 𝐹 ( Sect ‘ 𝑄 ) 𝐺 ) 𝑉𝑉 ( 𝐺 ( Sect ‘ 𝑄 ) 𝐹 ) 𝑈 ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ∧ ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) ) )
13 1 fucbas ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 )
14 funcrcl ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
15 4 14 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
16 15 simpld ( 𝜑𝐶 ∈ Cat )
17 15 simprd ( 𝜑𝐷 ∈ Cat )
18 1 16 17 fuccat ( 𝜑𝑄 ∈ Cat )
19 13 6 18 4 5 8 isinv ( 𝜑 → ( 𝑈 ( 𝐹 𝐼 𝐺 ) 𝑉 ↔ ( 𝑈 ( 𝐹 ( Sect ‘ 𝑄 ) 𝐺 ) 𝑉𝑉 ( 𝐺 ( Sect ‘ 𝑄 ) 𝐹 ) 𝑈 ) ) )
20 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
21 17 adantr ( ( 𝜑𝑥𝐵 ) → 𝐷 ∈ Cat )
22 relfunc Rel ( 𝐶 Func 𝐷 )
23 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
24 22 4 23 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
25 2 20 24 funcf1 ( 𝜑 → ( 1st𝐹 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
26 25 ffvelrnda ( ( 𝜑𝑥𝐵 ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
27 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
28 22 5 27 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
29 2 20 28 funcf1 ( 𝜑 → ( 1st𝐺 ) : 𝐵 ⟶ ( Base ‘ 𝐷 ) )
30 29 ffvelrnda ( ( 𝜑𝑥𝐵 ) → ( ( 1st𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) )
31 20 7 21 26 30 9 isinv ( ( 𝜑𝑥𝐵 ) → ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ↔ ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
32 31 ralbidva ( 𝜑 → ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ↔ ∀ 𝑥𝐵 ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
33 r19.26 ( ∀ 𝑥𝐵 ( ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ↔ ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) )
34 32 33 bitrdi ( 𝜑 → ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ↔ ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
35 34 anbi2d ( 𝜑 → ( ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) ) )
36 df-3an ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) )
37 df-3an ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) )
38 3ancoma ( ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ↔ ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) )
39 df-3an ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) )
40 38 39 bitri ( ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) )
41 37 40 anbi12i ( ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ∧ ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) ↔ ( ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ∧ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
42 anandi ( ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) ↔ ( ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ∧ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
43 41 42 bitr4i ( ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ∧ ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ) ∧ ( ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) )
44 35 36 43 3bitr4g ( 𝜑 → ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ↔ ( ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ∧ ( 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ ∀ 𝑥𝐵 ( 𝑉𝑥 ) ( ( ( 1st𝐺 ) ‘ 𝑥 ) ( Sect ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 𝑈𝑥 ) ) ) ) )
45 12 19 44 3bitr4d ( 𝜑 → ( 𝑈 ( 𝐹 𝐼 𝐺 ) 𝑉 ↔ ( 𝑈 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝑉 ∈ ( 𝐺 𝑁 𝐹 ) ∧ ∀ 𝑥𝐵 ( 𝑈𝑥 ) ( ( ( 1st𝐹 ) ‘ 𝑥 ) 𝐽 ( ( 1st𝐺 ) ‘ 𝑥 ) ) ( 𝑉𝑥 ) ) ) )