Metamath Proof Explorer


Theorem fucinv

Description: Two natural transformations are inverses of each other iff all the components are inverse. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q Q=CFuncCatD
fuciso.b B=BaseC
fuciso.n N=CNatD
fuciso.f φFCFuncD
fuciso.g φGCFuncD
fucinv.i I=InvQ
fucinv.j J=InvD
Assertion fucinv φUFIGVUFNGVGNFxBUx1stFxJ1stGxVx

Proof

Step Hyp Ref Expression
1 fuciso.q Q=CFuncCatD
2 fuciso.b B=BaseC
3 fuciso.n N=CNatD
4 fuciso.f φFCFuncD
5 fuciso.g φGCFuncD
6 fucinv.i I=InvQ
7 fucinv.j J=InvD
8 eqid SectQ=SectQ
9 eqid SectD=SectD
10 1 2 3 4 5 8 9 fucsect φUFSectQGVUFNGVGNFxBUx1stFxSectD1stGxVx
11 1 2 3 5 4 8 9 fucsect φVGSectQFUVGNFUFNGxBVx1stGxSectD1stFxUx
12 10 11 anbi12d φUFSectQGVVGSectQFUUFNGVGNFxBUx1stFxSectD1stGxVxVGNFUFNGxBVx1stGxSectD1stFxUx
13 1 fucbas CFuncD=BaseQ
14 funcrcl FCFuncDCCatDCat
15 4 14 syl φCCatDCat
16 15 simpld φCCat
17 15 simprd φDCat
18 1 16 17 fuccat φQCat
19 13 6 18 4 5 8 isinv φUFIGVUFSectQGVVGSectQFU
20 eqid BaseD=BaseD
21 17 adantr φxBDCat
22 relfunc RelCFuncD
23 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
24 22 4 23 sylancr φ1stFCFuncD2ndF
25 2 20 24 funcf1 φ1stF:BBaseD
26 25 ffvelcdmda φxB1stFxBaseD
27 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
28 22 5 27 sylancr φ1stGCFuncD2ndG
29 2 20 28 funcf1 φ1stG:BBaseD
30 29 ffvelcdmda φxB1stGxBaseD
31 20 7 21 26 30 9 isinv φxBUx1stFxJ1stGxVxUx1stFxSectD1stGxVxVx1stGxSectD1stFxUx
32 31 ralbidva φxBUx1stFxJ1stGxVxxBUx1stFxSectD1stGxVxVx1stGxSectD1stFxUx
33 r19.26 xBUx1stFxSectD1stGxVxVx1stGxSectD1stFxUxxBUx1stFxSectD1stGxVxxBVx1stGxSectD1stFxUx
34 32 33 bitrdi φxBUx1stFxJ1stGxVxxBUx1stFxSectD1stGxVxxBVx1stGxSectD1stFxUx
35 34 anbi2d φUFNGVGNFxBUx1stFxJ1stGxVxUFNGVGNFxBUx1stFxSectD1stGxVxxBVx1stGxSectD1stFxUx
36 df-3an UFNGVGNFxBUx1stFxJ1stGxVxUFNGVGNFxBUx1stFxJ1stGxVx
37 df-3an UFNGVGNFxBUx1stFxSectD1stGxVxUFNGVGNFxBUx1stFxSectD1stGxVx
38 3ancoma VGNFUFNGxBVx1stGxSectD1stFxUxUFNGVGNFxBVx1stGxSectD1stFxUx
39 df-3an UFNGVGNFxBVx1stGxSectD1stFxUxUFNGVGNFxBVx1stGxSectD1stFxUx
40 38 39 bitri VGNFUFNGxBVx1stGxSectD1stFxUxUFNGVGNFxBVx1stGxSectD1stFxUx
41 37 40 anbi12i UFNGVGNFxBUx1stFxSectD1stGxVxVGNFUFNGxBVx1stGxSectD1stFxUxUFNGVGNFxBUx1stFxSectD1stGxVxUFNGVGNFxBVx1stGxSectD1stFxUx
42 anandi UFNGVGNFxBUx1stFxSectD1stGxVxxBVx1stGxSectD1stFxUxUFNGVGNFxBUx1stFxSectD1stGxVxUFNGVGNFxBVx1stGxSectD1stFxUx
43 41 42 bitr4i UFNGVGNFxBUx1stFxSectD1stGxVxVGNFUFNGxBVx1stGxSectD1stFxUxUFNGVGNFxBUx1stFxSectD1stGxVxxBVx1stGxSectD1stFxUx
44 35 36 43 3bitr4g φUFNGVGNFxBUx1stFxJ1stGxVxUFNGVGNFxBUx1stFxSectD1stGxVxVGNFUFNGxBVx1stGxSectD1stFxUx
45 12 19 44 3bitr4d φUFIGVUFNGVGNFxBUx1stFxJ1stGxVx