Metamath Proof Explorer


Theorem fucsect

Description: Two natural transformations are in a section iff all the components are in a section relation. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q Q=CFuncCatD
fuciso.b B=BaseC
fuciso.n N=CNatD
fuciso.f φFCFuncD
fuciso.g φGCFuncD
fucsect.s S=SectQ
fucsect.t T=SectD
Assertion fucsect φUFSGVUFNGVGNFxBUx1stFxT1stGxVx

Proof

Step Hyp Ref Expression
1 fuciso.q Q=CFuncCatD
2 fuciso.b B=BaseC
3 fuciso.n N=CNatD
4 fuciso.f φFCFuncD
5 fuciso.g φGCFuncD
6 fucsect.s S=SectQ
7 fucsect.t T=SectD
8 1 fucbas CFuncD=BaseQ
9 1 3 fuchom N=HomQ
10 eqid compQ=compQ
11 eqid IdQ=IdQ
12 funcrcl FCFuncDCCatDCat
13 4 12 syl φCCatDCat
14 13 simpld φCCat
15 13 simprd φDCat
16 1 14 15 fuccat φQCat
17 8 9 10 11 6 16 4 5 issect φUFSGVUFNGVGNFVFGcompQFU=IdQF
18 ovex Vx1stFx1stGxcompD1stFxUxV
19 18 rgenw xBVx1stFx1stGxcompD1stFxUxV
20 mpteqb xBVx1stFx1stGxcompD1stFxUxVxBVx1stFx1stGxcompD1stFxUx=xBIdD1stFxxBVx1stFx1stGxcompD1stFxUx=IdD1stFx
21 19 20 mp1i φUFNGVGNFxBVx1stFx1stGxcompD1stFxUx=xBIdD1stFxxBVx1stFx1stGxcompD1stFxUx=IdD1stFx
22 eqid compD=compD
23 simprl φUFNGVGNFUFNG
24 simprr φUFNGVGNFVGNF
25 1 3 2 22 10 23 24 fucco φUFNGVGNFVFGcompQFU=xBVx1stFx1stGxcompD1stFxUx
26 eqid IdD=IdD
27 4 adantr φUFNGVGNFFCFuncD
28 1 11 26 27 fucid φUFNGVGNFIdQF=IdD1stF
29 15 adantr φUFNGVGNFDCat
30 eqid BaseD=BaseD
31 30 26 cidfn DCatIdDFnBaseD
32 29 31 syl φUFNGVGNFIdDFnBaseD
33 dffn2 IdDFnBaseDIdD:BaseDV
34 32 33 sylib φUFNGVGNFIdD:BaseDV
35 relfunc RelCFuncD
36 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
37 35 4 36 sylancr φ1stFCFuncD2ndF
38 2 30 37 funcf1 φ1stF:BBaseD
39 38 adantr φUFNGVGNF1stF:BBaseD
40 fcompt IdD:BaseDV1stF:BBaseDIdD1stF=xBIdD1stFx
41 34 39 40 syl2anc φUFNGVGNFIdD1stF=xBIdD1stFx
42 28 41 eqtrd φUFNGVGNFIdQF=xBIdD1stFx
43 25 42 eqeq12d φUFNGVGNFVFGcompQFU=IdQFxBVx1stFx1stGxcompD1stFxUx=xBIdD1stFx
44 eqid HomD=HomD
45 29 adantr φUFNGVGNFxBDCat
46 39 ffvelcdmda φUFNGVGNFxB1stFxBaseD
47 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
48 35 5 47 sylancr φ1stGCFuncD2ndG
49 2 30 48 funcf1 φ1stG:BBaseD
50 49 adantr φUFNGVGNF1stG:BBaseD
51 50 ffvelcdmda φUFNGVGNFxB1stGxBaseD
52 23 adantr φUFNGVGNFxBUFNG
53 3 52 nat1st2nd φUFNGVGNFxBU1stF2ndFN1stG2ndG
54 simpr φUFNGVGNFxBxB
55 3 53 2 44 54 natcl φUFNGVGNFxBUx1stFxHomD1stGx
56 24 adantr φUFNGVGNFxBVGNF
57 3 56 nat1st2nd φUFNGVGNFxBV1stG2ndGN1stF2ndF
58 3 57 2 44 54 natcl φUFNGVGNFxBVx1stGxHomD1stFx
59 30 44 22 26 7 45 46 51 55 58 issect2 φUFNGVGNFxBUx1stFxT1stGxVxVx1stFx1stGxcompD1stFxUx=IdD1stFx
60 59 ralbidva φUFNGVGNFxBUx1stFxT1stGxVxxBVx1stFx1stGxcompD1stFxUx=IdD1stFx
61 21 43 60 3bitr4d φUFNGVGNFVFGcompQFU=IdQFxBUx1stFxT1stGxVx
62 61 pm5.32da φUFNGVGNFVFGcompQFU=IdQFUFNGVGNFxBUx1stFxT1stGxVx
63 df-3an UFNGVGNFVFGcompQFU=IdQFUFNGVGNFVFGcompQFU=IdQF
64 df-3an UFNGVGNFxBUx1stFxT1stGxVxUFNGVGNFxBUx1stFxT1stGxVx
65 62 63 64 3bitr4g φUFNGVGNFVFGcompQFU=IdQFUFNGVGNFxBUx1stFxT1stGxVx
66 17 65 bitrd φUFSGVUFNGVGNFxBUx1stFxT1stGxVx