| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
| 3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
invss.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 7 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 8 |
1 2 3 4 5 7
|
invfval |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ) |
| 9 |
|
inss1 |
⊢ ( ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ∩ ◡ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) ⊆ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) |
| 10 |
8 9
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) |
| 11 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 12 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 13 |
1 6 11 12 7 3 4 5
|
sectss |
⊢ ( 𝜑 → ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |
| 14 |
10 13
|
sstrd |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) ) |