Metamath Proof Explorer


Theorem sectss

Description: The section relation is a relation between morphisms from X to Y and morphisms from Y to X . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses issect.b 𝐵 = ( Base ‘ 𝐶 )
issect.h 𝐻 = ( Hom ‘ 𝐶 )
issect.o · = ( comp ‘ 𝐶 )
issect.i 1 = ( Id ‘ 𝐶 )
issect.s 𝑆 = ( Sect ‘ 𝐶 )
issect.c ( 𝜑𝐶 ∈ Cat )
issect.x ( 𝜑𝑋𝐵 )
issect.y ( 𝜑𝑌𝐵 )
Assertion sectss ( 𝜑 → ( 𝑋 𝑆 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 issect.b 𝐵 = ( Base ‘ 𝐶 )
2 issect.h 𝐻 = ( Hom ‘ 𝐶 )
3 issect.o · = ( comp ‘ 𝐶 )
4 issect.i 1 = ( Id ‘ 𝐶 )
5 issect.s 𝑆 = ( Sect ‘ 𝐶 )
6 issect.c ( 𝜑𝐶 ∈ Cat )
7 issect.x ( 𝜑𝑋𝐵 )
8 issect.y ( 𝜑𝑌𝐵 )
9 1 2 3 4 5 6 7 8 sectfval ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝑓 ) = ( 1𝑋 ) ) } )
10 opabssxp { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( ⟨ 𝑋 , 𝑌· 𝑋 ) 𝑓 ) = ( 1𝑋 ) ) } ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) )
11 9 10 eqsstrdi ( 𝜑 → ( 𝑋 𝑆 𝑌 ) ⊆ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑌 𝐻 𝑋 ) ) )