Metamath Proof Explorer


Theorem fuciso

Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q Q=CFuncCatD
fuciso.b B=BaseC
fuciso.n N=CNatD
fuciso.f φFCFuncD
fuciso.g φGCFuncD
fuciso.i I=IsoQ
fuciso.j J=IsoD
Assertion fuciso φAFIGAFNGxBAx1stFxJ1stGx

Proof

Step Hyp Ref Expression
1 fuciso.q Q=CFuncCatD
2 fuciso.b B=BaseC
3 fuciso.n N=CNatD
4 fuciso.f φFCFuncD
5 fuciso.g φGCFuncD
6 fuciso.i I=IsoQ
7 fuciso.j J=IsoD
8 1 fucbas CFuncD=BaseQ
9 1 3 fuchom N=HomQ
10 funcrcl FCFuncDCCatDCat
11 4 10 syl φCCatDCat
12 11 simpld φCCat
13 11 simprd φDCat
14 1 12 13 fuccat φQCat
15 8 9 6 14 4 5 isohom φFIGFNG
16 15 sselda φAFIGAFNG
17 eqid BaseD=BaseD
18 eqid InvD=InvD
19 13 ad2antrr φAFIGxBDCat
20 relfunc RelCFuncD
21 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
22 20 4 21 sylancr φ1stFCFuncD2ndF
23 2 17 22 funcf1 φ1stF:BBaseD
24 23 adantr φAFIG1stF:BBaseD
25 24 ffvelcdmda φAFIGxB1stFxBaseD
26 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
27 20 5 26 sylancr φ1stGCFuncD2ndG
28 2 17 27 funcf1 φ1stG:BBaseD
29 28 adantr φAFIG1stG:BBaseD
30 29 ffvelcdmda φAFIGxB1stGxBaseD
31 eqid InvQ=InvQ
32 8 31 14 4 5 6 isoval φFIG=domFInvQG
33 32 eleq2d φAFIGAdomFInvQG
34 8 31 14 4 5 invfun φFunFInvQG
35 funfvbrb FunFInvQGAdomFInvQGAFInvQGFInvQGA
36 34 35 syl φAdomFInvQGAFInvQGFInvQGA
37 33 36 bitrd φAFIGAFInvQGFInvQGA
38 37 biimpa φAFIGAFInvQGFInvQGA
39 1 2 3 4 5 31 18 fucinv φAFInvQGFInvQGAAFNGFInvQGAGNFxBAx1stFxInvD1stGxFInvQGAx
40 39 adantr φAFIGAFInvQGFInvQGAAFNGFInvQGAGNFxBAx1stFxInvD1stGxFInvQGAx
41 38 40 mpbid φAFIGAFNGFInvQGAGNFxBAx1stFxInvD1stGxFInvQGAx
42 41 simp3d φAFIGxBAx1stFxInvD1stGxFInvQGAx
43 42 r19.21bi φAFIGxBAx1stFxInvD1stGxFInvQGAx
44 17 18 19 25 30 7 43 inviso1 φAFIGxBAx1stFxJ1stGx
45 44 ralrimiva φAFIGxBAx1stFxJ1stGx
46 16 45 jca φAFIGAFNGxBAx1stFxJ1stGx
47 14 adantr φAFNGxBAx1stFxJ1stGxQCat
48 4 adantr φAFNGxBAx1stFxJ1stGxFCFuncD
49 5 adantr φAFNGxBAx1stFxJ1stGxGCFuncD
50 simprl φAFNGxBAx1stFxJ1stGxAFNG
51 13 ad2antrr φAFNGxBAx1stFxJ1stGxyBDCat
52 23 adantr φAFNGxBAx1stFxJ1stGx1stF:BBaseD
53 52 ffvelcdmda φAFNGxBAx1stFxJ1stGxyB1stFyBaseD
54 28 adantr φAFNGxBAx1stFxJ1stGx1stG:BBaseD
55 54 ffvelcdmda φAFNGxBAx1stFxJ1stGxyB1stGyBaseD
56 simprr φAFNGxBAx1stFxJ1stGxxBAx1stFxJ1stGx
57 fveq2 x=yAx=Ay
58 fveq2 x=y1stFx=1stFy
59 fveq2 x=y1stGx=1stGy
60 58 59 oveq12d x=y1stFxJ1stGx=1stFyJ1stGy
61 57 60 eleq12d x=yAx1stFxJ1stGxAy1stFyJ1stGy
62 61 rspccva xBAx1stFxJ1stGxyBAy1stFyJ1stGy
63 56 62 sylan φAFNGxBAx1stFxJ1stGxyBAy1stFyJ1stGy
64 17 7 18 51 53 55 63 invisoinvr φAFNGxBAx1stFxJ1stGxyBAy1stFyInvD1stGy1stFyInvD1stGyAy
65 1 2 3 48 49 31 18 50 64 invfuc φAFNGxBAx1stFxJ1stGxAFInvQGyB1stFyInvD1stGyAy
66 8 31 47 48 49 6 65 inviso1 φAFNGxBAx1stFxJ1stGxAFIG
67 46 66 impbida φAFIGAFNGxBAx1stFxJ1stGx