Description: The inverse of an isomorphism is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | |- B = ( Base ` C ) |
|
| invisoinv.i | |- I = ( Iso ` C ) |
||
| invisoinv.n | |- N = ( Inv ` C ) |
||
| invisoinv.c | |- ( ph -> C e. Cat ) |
||
| invisoinv.x | |- ( ph -> X e. B ) |
||
| invisoinv.y | |- ( ph -> Y e. B ) |
||
| invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
||
| Assertion | invisoinvr | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | |- B = ( Base ` C ) |
|
| 2 | invisoinv.i | |- I = ( Iso ` C ) |
|
| 3 | invisoinv.n | |- N = ( Inv ` C ) |
|
| 4 | invisoinv.c | |- ( ph -> C e. Cat ) |
|
| 5 | invisoinv.x | |- ( ph -> X e. B ) |
|
| 6 | invisoinv.y | |- ( ph -> Y e. B ) |
|
| 7 | invisoinv.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 8 | 1 2 3 4 5 6 7 | invisoinvl | |- ( ph -> ( ( X N Y ) ` F ) ( Y N X ) F ) |
| 9 | 1 3 4 5 6 | invsym | |- ( ph -> ( F ( X N Y ) ( ( X N Y ) ` F ) <-> ( ( X N Y ) ` F ) ( Y N X ) F ) ) |
| 10 | 8 9 | mpbird | |- ( ph -> F ( X N Y ) ( ( X N Y ) ` F ) ) |