| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invfval.b |
|- B = ( Base ` C ) |
| 2 |
|
invfval.n |
|- N = ( Inv ` C ) |
| 3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
invss.x |
|- ( ph -> X e. B ) |
| 5 |
|
invss.y |
|- ( ph -> Y e. B ) |
| 6 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 7 |
1 2 3 4 5 6
|
isinv |
|- ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) |
| 8 |
7
|
biancomd |
|- ( ph -> ( F ( X N Y ) G <-> ( G ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) G ) ) ) |
| 9 |
1 2 3 5 4 6
|
isinv |
|- ( ph -> ( G ( Y N X ) F <-> ( G ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) G ) ) ) |
| 10 |
8 9
|
bitr4d |
|- ( ph -> ( F ( X N Y ) G <-> G ( Y N X ) F ) ) |