Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yoneda.m |
|- M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) ) |
17 |
|
yonedainv.i |
|- I = ( Inv ` R ) |
18 |
|
yonedainv.n |
|- N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
19 |
|
eqid |
|- ( Q Xc. O ) = ( Q Xc. O ) |
20 |
7
|
fucbas |
|- ( O Func S ) = ( Base ` Q ) |
21 |
4 2
|
oppcbas |
|- B = ( Base ` O ) |
22 |
19 20 21
|
xpcbas |
|- ( ( O Func S ) X. B ) = ( Base ` ( Q Xc. O ) ) |
23 |
|
eqid |
|- ( ( Q Xc. O ) Nat T ) = ( ( Q Xc. O ) Nat T ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
yonedalem1 |
|- ( ph -> ( Z e. ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) ) |
25 |
24
|
simpld |
|- ( ph -> Z e. ( ( Q Xc. O ) Func T ) ) |
26 |
24
|
simprd |
|- ( ph -> E e. ( ( Q Xc. O ) Func T ) ) |
27 |
|
eqid |
|- ( Inv ` T ) = ( Inv ` T ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
yonedalem3 |
|- ( ph -> M e. ( Z ( ( Q Xc. O ) Nat T ) E ) ) |
29 |
12
|
adantr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> C e. Cat ) |
30 |
13
|
adantr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> V e. W ) |
31 |
14
|
adantr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ran ( Homf ` C ) C_ U ) |
32 |
15
|
adantr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
33 |
|
simprl |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> h e. ( O Func S ) ) |
34 |
|
simprr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> w e. B ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34 16
|
yonedalem3a |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) = ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) /\ ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) ) ) |
36 |
35
|
simprd |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) ) |
37 |
29
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> C e. Cat ) |
38 |
30
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> V e. W ) |
39 |
31
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> ran ( Homf ` C ) C_ U ) |
40 |
32
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
41 |
|
simplrl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> h e. ( O Func S ) ) |
42 |
|
simplrr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> w e. B ) |
43 |
|
simpr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> b e. ( ( 1st ` h ) ` w ) ) |
44 |
1 2 3 4 5 6 7 8 9 10 11 37 38 39 40 41 42 18 43
|
yonedalem4c |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( ( 1st ` h ) ` w ) ) -> ( ( h N w ) ` b ) e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
45 |
44
|
fmpttd |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( b e. ( ( 1st ` h ) ` w ) |-> ( ( h N w ) ` b ) ) : ( ( 1st ` h ) ` w ) --> ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
46 |
2
|
fvexi |
|- B e. _V |
47 |
46
|
mptex |
|- ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) e. _V |
48 |
|
eqid |
|- ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) = ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) |
49 |
47 48
|
fnmpti |
|- ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) Fn ( ( 1st ` h ) ` w ) |
50 |
|
simpl |
|- ( ( f = h /\ x = w ) -> f = h ) |
51 |
50
|
fveq2d |
|- ( ( f = h /\ x = w ) -> ( 1st ` f ) = ( 1st ` h ) ) |
52 |
|
simpr |
|- ( ( f = h /\ x = w ) -> x = w ) |
53 |
51 52
|
fveq12d |
|- ( ( f = h /\ x = w ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` h ) ` w ) ) |
54 |
|
simplr |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> x = w ) |
55 |
54
|
oveq2d |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> ( y ( Hom ` C ) x ) = ( y ( Hom ` C ) w ) ) |
56 |
|
simpll |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> f = h ) |
57 |
56
|
fveq2d |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> ( 2nd ` f ) = ( 2nd ` h ) ) |
58 |
|
eqidd |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> y = y ) |
59 |
57 54 58
|
oveq123d |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> ( x ( 2nd ` f ) y ) = ( w ( 2nd ` h ) y ) ) |
60 |
59
|
fveq1d |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> ( ( x ( 2nd ` f ) y ) ` g ) = ( ( w ( 2nd ` h ) y ) ` g ) ) |
61 |
60
|
fveq1d |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) = ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) |
62 |
55 61
|
mpteq12dv |
|- ( ( ( f = h /\ x = w ) /\ y e. B ) -> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) = ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) |
63 |
62
|
mpteq2dva |
|- ( ( f = h /\ x = w ) -> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) |
64 |
53 63
|
mpteq12dv |
|- ( ( f = h /\ x = w ) -> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) = ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) ) |
65 |
|
fvex |
|- ( ( 1st ` h ) ` w ) e. _V |
66 |
65
|
mptex |
|- ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) e. _V |
67 |
64 18 66
|
ovmpoa |
|- ( ( h e. ( O Func S ) /\ w e. B ) -> ( h N w ) = ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) ) |
68 |
67
|
adantl |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h N w ) = ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) ) |
69 |
68
|
fneq1d |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h N w ) Fn ( ( 1st ` h ) ` w ) <-> ( u e. ( ( 1st ` h ) ` w ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) w ) |-> ( ( ( w ( 2nd ` h ) y ) ` g ) ` u ) ) ) ) Fn ( ( 1st ` h ) ` w ) ) ) |
70 |
49 69
|
mpbiri |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h N w ) Fn ( ( 1st ` h ) ` w ) ) |
71 |
|
dffn5 |
|- ( ( h N w ) Fn ( ( 1st ` h ) ` w ) <-> ( h N w ) = ( b e. ( ( 1st ` h ) ` w ) |-> ( ( h N w ) ` b ) ) ) |
72 |
70 71
|
sylib |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h N w ) = ( b e. ( ( 1st ` h ) ` w ) |-> ( ( h N w ) ` b ) ) ) |
73 |
4
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
74 |
12 73
|
syl |
|- ( ph -> O e. Cat ) |
75 |
74
|
adantr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> O e. Cat ) |
76 |
15
|
unssbd |
|- ( ph -> U C_ V ) |
77 |
13 76
|
ssexd |
|- ( ph -> U e. _V ) |
78 |
5
|
setccat |
|- ( U e. _V -> S e. Cat ) |
79 |
77 78
|
syl |
|- ( ph -> S e. Cat ) |
80 |
79
|
adantr |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> S e. Cat ) |
81 |
10 75 80 21 33 34
|
evlf1 |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h ( 1st ` E ) w ) = ( ( 1st ` h ) ` w ) ) |
82 |
1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34
|
yonedalem21 |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h ( 1st ` Z ) w ) = ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
83 |
72 81 82
|
feq123d |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h N w ) : ( h ( 1st ` E ) w ) --> ( h ( 1st ` Z ) w ) <-> ( b e. ( ( 1st ` h ) ` w ) |-> ( ( h N w ) ` b ) ) : ( ( 1st ` h ) ` w ) --> ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) ) |
84 |
45 83
|
mpbird |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h N w ) : ( h ( 1st ` E ) w ) --> ( h ( 1st ` Z ) w ) ) |
85 |
|
fcompt |
|- ( ( ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) /\ ( h N w ) : ( h ( 1st ` E ) w ) --> ( h ( 1st ` Z ) w ) ) -> ( ( h M w ) o. ( h N w ) ) = ( k e. ( h ( 1st ` E ) w ) |-> ( ( h M w ) ` ( ( h N w ) ` k ) ) ) ) |
86 |
36 84 85
|
syl2anc |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) o. ( h N w ) ) = ( k e. ( h ( 1st ` E ) w ) |-> ( ( h M w ) ` ( ( h N w ) ` k ) ) ) ) |
87 |
81
|
eleq2d |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( k e. ( h ( 1st ` E ) w ) <-> k e. ( ( 1st ` h ) ` w ) ) ) |
88 |
87
|
biimpa |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( h ( 1st ` E ) w ) ) -> k e. ( ( 1st ` h ) ` w ) ) |
89 |
29
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> C e. Cat ) |
90 |
30
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> V e. W ) |
91 |
31
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ran ( Homf ` C ) C_ U ) |
92 |
32
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
93 |
|
simplrl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> h e. ( O Func S ) ) |
94 |
|
simplrr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> w e. B ) |
95 |
1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 16
|
yonedalem3a |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( h M w ) = ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) /\ ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) ) ) |
96 |
95
|
simpld |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( h M w ) = ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ) |
97 |
96
|
fveq1d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( h M w ) ` ( ( h N w ) ` k ) ) = ( ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ` ( ( h N w ) ` k ) ) ) |
98 |
72 44
|
fmpt3d |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h N w ) : ( ( 1st ` h ) ` w ) --> ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
99 |
98
|
ffvelrnda |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( h N w ) ` k ) e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
100 |
|
fveq1 |
|- ( a = ( ( h N w ) ` k ) -> ( a ` w ) = ( ( ( h N w ) ` k ) ` w ) ) |
101 |
100
|
fveq1d |
|- ( a = ( ( h N w ) ` k ) -> ( ( a ` w ) ` ( .1. ` w ) ) = ( ( ( ( h N w ) ` k ) ` w ) ` ( .1. ` w ) ) ) |
102 |
|
eqid |
|- ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) = ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) |
103 |
|
fvex |
|- ( ( ( ( h N w ) ` k ) ` w ) ` ( .1. ` w ) ) e. _V |
104 |
101 102 103
|
fvmpt |
|- ( ( ( h N w ) ` k ) e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) -> ( ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ` ( ( h N w ) ` k ) ) = ( ( ( ( h N w ) ` k ) ` w ) ` ( .1. ` w ) ) ) |
105 |
99 104
|
syl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ` ( ( h N w ) ` k ) ) = ( ( ( ( h N w ) ` k ) ` w ) ` ( .1. ` w ) ) ) |
106 |
|
simpr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> k e. ( ( 1st ` h ) ` w ) ) |
107 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
108 |
2 107 3 89 94
|
catidcl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( .1. ` w ) e. ( w ( Hom ` C ) w ) ) |
109 |
1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 18 106 94 108
|
yonedalem4b |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( ( ( h N w ) ` k ) ` w ) ` ( .1. ` w ) ) = ( ( ( w ( 2nd ` h ) w ) ` ( .1. ` w ) ) ` k ) ) |
110 |
|
eqid |
|- ( Id ` O ) = ( Id ` O ) |
111 |
|
eqid |
|- ( Id ` S ) = ( Id ` S ) |
112 |
|
relfunc |
|- Rel ( O Func S ) |
113 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ h e. ( O Func S ) ) -> ( 1st ` h ) ( O Func S ) ( 2nd ` h ) ) |
114 |
112 93 113
|
sylancr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( 1st ` h ) ( O Func S ) ( 2nd ` h ) ) |
115 |
21 110 111 114 94
|
funcid |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( w ( 2nd ` h ) w ) ` ( ( Id ` O ) ` w ) ) = ( ( Id ` S ) ` ( ( 1st ` h ) ` w ) ) ) |
116 |
4 3
|
oppcid |
|- ( C e. Cat -> ( Id ` O ) = .1. ) |
117 |
89 116
|
syl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( Id ` O ) = .1. ) |
118 |
117
|
fveq1d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( Id ` O ) ` w ) = ( .1. ` w ) ) |
119 |
118
|
fveq2d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( w ( 2nd ` h ) w ) ` ( ( Id ` O ) ` w ) ) = ( ( w ( 2nd ` h ) w ) ` ( .1. ` w ) ) ) |
120 |
77
|
ad2antrr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> U e. _V ) |
121 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
122 |
21 121 114
|
funcf1 |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( 1st ` h ) : B --> ( Base ` S ) ) |
123 |
5 120
|
setcbas |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> U = ( Base ` S ) ) |
124 |
123
|
feq3d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( 1st ` h ) : B --> U <-> ( 1st ` h ) : B --> ( Base ` S ) ) ) |
125 |
122 124
|
mpbird |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( 1st ` h ) : B --> U ) |
126 |
125 94
|
ffvelrnd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( 1st ` h ) ` w ) e. U ) |
127 |
5 111 120 126
|
setcid |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( Id ` S ) ` ( ( 1st ` h ) ` w ) ) = ( _I |` ( ( 1st ` h ) ` w ) ) ) |
128 |
115 119 127
|
3eqtr3d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( w ( 2nd ` h ) w ) ` ( .1. ` w ) ) = ( _I |` ( ( 1st ` h ) ` w ) ) ) |
129 |
128
|
fveq1d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( ( w ( 2nd ` h ) w ) ` ( .1. ` w ) ) ` k ) = ( ( _I |` ( ( 1st ` h ) ` w ) ) ` k ) ) |
130 |
|
fvresi |
|- ( k e. ( ( 1st ` h ) ` w ) -> ( ( _I |` ( ( 1st ` h ) ` w ) ) ` k ) = k ) |
131 |
130
|
adantl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( _I |` ( ( 1st ` h ) ` w ) ) ` k ) = k ) |
132 |
109 129 131
|
3eqtrd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( ( ( h N w ) ` k ) ` w ) ` ( .1. ` w ) ) = k ) |
133 |
97 105 132
|
3eqtrd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( ( 1st ` h ) ` w ) ) -> ( ( h M w ) ` ( ( h N w ) ` k ) ) = k ) |
134 |
88 133
|
syldan |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ k e. ( h ( 1st ` E ) w ) ) -> ( ( h M w ) ` ( ( h N w ) ` k ) ) = k ) |
135 |
134
|
mpteq2dva |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( k e. ( h ( 1st ` E ) w ) |-> ( ( h M w ) ` ( ( h N w ) ` k ) ) ) = ( k e. ( h ( 1st ` E ) w ) |-> k ) ) |
136 |
|
mptresid |
|- ( _I |` ( h ( 1st ` E ) w ) ) = ( k e. ( h ( 1st ` E ) w ) |-> k ) |
137 |
135 136
|
eqtr4di |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( k e. ( h ( 1st ` E ) w ) |-> ( ( h M w ) ` ( ( h N w ) ` k ) ) ) = ( _I |` ( h ( 1st ` E ) w ) ) ) |
138 |
86 137
|
eqtrd |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) o. ( h N w ) ) = ( _I |` ( h ( 1st ` E ) w ) ) ) |
139 |
|
fcompt |
|- ( ( ( h N w ) : ( h ( 1st ` E ) w ) --> ( h ( 1st ` Z ) w ) /\ ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) ) -> ( ( h N w ) o. ( h M w ) ) = ( b e. ( h ( 1st ` Z ) w ) |-> ( ( h N w ) ` ( ( h M w ) ` b ) ) ) ) |
140 |
84 36 139
|
syl2anc |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h N w ) o. ( h M w ) ) = ( b e. ( h ( 1st ` Z ) w ) |-> ( ( h N w ) ` ( ( h M w ) ` b ) ) ) ) |
141 |
|
eqid |
|- ( O Nat S ) = ( O Nat S ) |
142 |
29
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> C e. Cat ) |
143 |
30
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> V e. W ) |
144 |
31
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ran ( Homf ` C ) C_ U ) |
145 |
32
|
adantr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
146 |
|
simplrl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> h e. ( O Func S ) ) |
147 |
|
simplrr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> w e. B ) |
148 |
81
|
feq3d |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) <-> ( h M w ) : ( h ( 1st ` Z ) w ) --> ( ( 1st ` h ) ` w ) ) ) |
149 |
36 148
|
mpbid |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h M w ) : ( h ( 1st ` Z ) w ) --> ( ( 1st ` h ) ` w ) ) |
150 |
149
|
ffvelrnda |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( h M w ) ` b ) e. ( ( 1st ` h ) ` w ) ) |
151 |
1 2 3 4 5 6 7 8 9 10 11 142 143 144 145 146 147 18 150
|
yonedalem4c |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( h N w ) ` ( ( h M w ) ` b ) ) e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
152 |
141 151
|
nat1st2nd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( h N w ) ` ( ( h M w ) ` b ) ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ( O Nat S ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
153 |
141 152 21
|
natfn |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( h N w ) ` ( ( h M w ) ` b ) ) Fn B ) |
154 |
82
|
eleq2d |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( b e. ( h ( 1st ` Z ) w ) <-> b e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) ) |
155 |
154
|
biimpa |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> b e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
156 |
141 155
|
nat1st2nd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> b e. ( <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ( O Nat S ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
157 |
141 156 21
|
natfn |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> b Fn B ) |
158 |
142
|
adantr |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> C e. Cat ) |
159 |
147
|
adantr |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> w e. B ) |
160 |
|
simpr |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> z e. B ) |
161 |
1 2 158 159 107 160
|
yon11 |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) = ( z ( Hom ` C ) w ) ) |
162 |
161
|
eleq2d |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) <-> k e. ( z ( Hom ` C ) w ) ) ) |
163 |
162
|
biimpa |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) -> k e. ( z ( Hom ` C ) w ) ) |
164 |
158
|
adantr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> C e. Cat ) |
165 |
143
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> V e. W ) |
166 |
144
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ran ( Homf ` C ) C_ U ) |
167 |
145
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
168 |
146
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> h e. ( O Func S ) ) |
169 |
159
|
adantr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> w e. B ) |
170 |
150
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( h M w ) ` b ) e. ( ( 1st ` h ) ` w ) ) |
171 |
|
simplr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> z e. B ) |
172 |
|
simpr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> k e. ( z ( Hom ` C ) w ) ) |
173 |
1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 18 170 171 172
|
yonedalem4b |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) ` k ) = ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( h M w ) ` b ) ) ) |
174 |
1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 16
|
yonedalem3a |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( h M w ) = ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) /\ ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) ) ) |
175 |
174
|
simpld |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( h M w ) = ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ) |
176 |
175
|
fveq1d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( h M w ) ` b ) = ( ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ` b ) ) |
177 |
155
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> b e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) ) |
178 |
|
fveq1 |
|- ( a = b -> ( a ` w ) = ( b ` w ) ) |
179 |
178
|
fveq1d |
|- ( a = b -> ( ( a ` w ) ` ( .1. ` w ) ) = ( ( b ` w ) ` ( .1. ` w ) ) ) |
180 |
|
fvex |
|- ( ( b ` w ) ` ( .1. ` w ) ) e. _V |
181 |
179 102 180
|
fvmpt |
|- ( b e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) -> ( ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ` b ) = ( ( b ` w ) ` ( .1. ` w ) ) ) |
182 |
177 181
|
syl |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( a e. ( ( ( 1st ` Y ) ` w ) ( O Nat S ) h ) |-> ( ( a ` w ) ` ( .1. ` w ) ) ) ` b ) = ( ( b ` w ) ` ( .1. ` w ) ) ) |
183 |
176 182
|
eqtrd |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( h M w ) ` b ) = ( ( b ` w ) ` ( .1. ` w ) ) ) |
184 |
183
|
fveq2d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( h M w ) ` b ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( b ` w ) ` ( .1. ` w ) ) ) ) |
185 |
156
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> b e. ( <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ( O Nat S ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
186 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
187 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
188 |
107 4
|
oppchom |
|- ( w ( Hom ` O ) z ) = ( z ( Hom ` C ) w ) |
189 |
172 188
|
eleqtrrdi |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> k e. ( w ( Hom ` O ) z ) ) |
190 |
141 185 21 186 187 169 171 189
|
nati |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( b ` z ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) , ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) >. ( comp ` S ) ( ( 1st ` h ) ` z ) ) ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) , ( ( 1st ` h ) ` w ) >. ( comp ` S ) ( ( 1st ` h ) ` z ) ) ( b ` w ) ) ) |
191 |
77
|
ad2antrr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> U e. _V ) |
192 |
191
|
adantr |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> U e. _V ) |
193 |
192
|
adantr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> U e. _V ) |
194 |
|
relfunc |
|- Rel ( C Func Q ) |
195 |
1 12 4 5 7 77 14
|
yoncl |
|- ( ph -> Y e. ( C Func Q ) ) |
196 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
197 |
194 195 196
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
198 |
2 20 197
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : B --> ( O Func S ) ) |
199 |
198
|
ad2antrr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` Y ) : B --> ( O Func S ) ) |
200 |
199 147
|
ffvelrnd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) |
201 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` w ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) ) |
202 |
112 200 201
|
sylancr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) ) |
203 |
21 121 202
|
funcf1 |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> ( Base ` S ) ) |
204 |
5 191
|
setcbas |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> U = ( Base ` S ) ) |
205 |
204
|
feq3d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> U <-> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> ( Base ` S ) ) ) |
206 |
203 205
|
mpbird |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) : B --> U ) |
207 |
206 147
|
ffvelrnd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) e. U ) |
208 |
207
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) e. U ) |
209 |
206
|
ffvelrnda |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) e. U ) |
210 |
209
|
adantr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) e. U ) |
211 |
112 146 113
|
sylancr |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` h ) ( O Func S ) ( 2nd ` h ) ) |
212 |
21 121 211
|
funcf1 |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` h ) : B --> ( Base ` S ) ) |
213 |
204
|
feq3d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( 1st ` h ) : B --> U <-> ( 1st ` h ) : B --> ( Base ` S ) ) ) |
214 |
212 213
|
mpbird |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( 1st ` h ) : B --> U ) |
215 |
214
|
ffvelrnda |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( 1st ` h ) ` z ) e. U ) |
216 |
215
|
adantr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` h ) ` z ) e. U ) |
217 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
218 |
202
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( 1st ` ( ( 1st ` Y ) ` w ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` w ) ) ) |
219 |
21 186 217 218 169 171
|
funcf2 |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) : ( w ( Hom ` O ) z ) --> ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) ) |
220 |
219 189
|
ffvelrnd |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) ) |
221 |
5 193 217 208 210
|
elsetchom |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) <-> ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) --> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) ) |
222 |
220 221
|
mpbid |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) --> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) |
223 |
156
|
adantr |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> b e. ( <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ( O Nat S ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
224 |
141 223 21 217 160
|
natcl |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( b ` z ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) ) |
225 |
5 192 217 209 215
|
elsetchom |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( b ` z ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) <-> ( b ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) --> ( ( 1st ` h ) ` z ) ) ) |
226 |
224 225
|
mpbid |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( b ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) --> ( ( 1st ` h ) ` z ) ) |
227 |
226
|
adantr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( b ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) --> ( ( 1st ` h ) ` z ) ) |
228 |
5 193 187 208 210 216 222 227
|
setcco |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( b ` z ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) , ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) >. ( comp ` S ) ( ( 1st ` h ) ` z ) ) ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ) = ( ( b ` z ) o. ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ) ) |
229 |
214 147
|
ffvelrnd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( 1st ` h ) ` w ) e. U ) |
230 |
229
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( 1st ` h ) ` w ) e. U ) |
231 |
141 156 21 217 147
|
natcl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( b ` w ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ( Hom ` S ) ( ( 1st ` h ) ` w ) ) ) |
232 |
5 191 217 207 229
|
elsetchom |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( b ` w ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ( Hom ` S ) ( ( 1st ` h ) ` w ) ) <-> ( b ` w ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) --> ( ( 1st ` h ) ` w ) ) ) |
233 |
231 232
|
mpbid |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( b ` w ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) --> ( ( 1st ` h ) ` w ) ) |
234 |
233
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( b ` w ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) --> ( ( 1st ` h ) ` w ) ) |
235 |
112 168 113
|
sylancr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( 1st ` h ) ( O Func S ) ( 2nd ` h ) ) |
236 |
21 186 217 235 169 171
|
funcf2 |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( w ( 2nd ` h ) z ) : ( w ( Hom ` O ) z ) --> ( ( ( 1st ` h ) ` w ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) ) |
237 |
236 189
|
ffvelrnd |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( w ( 2nd ` h ) z ) ` k ) e. ( ( ( 1st ` h ) ` w ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) ) |
238 |
5 193 217 230 216
|
elsetchom |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` h ) z ) ` k ) e. ( ( ( 1st ` h ) ` w ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) <-> ( ( w ( 2nd ` h ) z ) ` k ) : ( ( 1st ` h ) ` w ) --> ( ( 1st ` h ) ` z ) ) ) |
239 |
237 238
|
mpbid |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( w ( 2nd ` h ) z ) ` k ) : ( ( 1st ` h ) ` w ) --> ( ( 1st ` h ) ` z ) ) |
240 |
5 193 187 208 230 216 234 239
|
setcco |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` h ) z ) ` k ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) , ( ( 1st ` h ) ` w ) >. ( comp ` S ) ( ( 1st ` h ) ` z ) ) ( b ` w ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) o. ( b ` w ) ) ) |
241 |
190 228 240
|
3eqtr3d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( b ` z ) o. ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) o. ( b ` w ) ) ) |
242 |
241
|
fveq1d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( b ` z ) o. ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ) ` ( .1. ` w ) ) = ( ( ( ( w ( 2nd ` h ) z ) ` k ) o. ( b ` w ) ) ` ( .1. ` w ) ) ) |
243 |
2 107 3 142 147
|
catidcl |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( .1. ` w ) e. ( w ( Hom ` C ) w ) ) |
244 |
1 2 142 147 107 147
|
yon11 |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) = ( w ( Hom ` C ) w ) ) |
245 |
243 244
|
eleqtrrd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( .1. ` w ) e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ) |
246 |
245
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( .1. ` w ) e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` w ) ) |
247 |
222 246
|
fvco3d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( b ` z ) o. ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ) ` ( .1. ` w ) ) = ( ( b ` z ) ` ( ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ` ( .1. ` w ) ) ) ) |
248 |
233 245
|
fvco3d |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( ( ( w ( 2nd ` h ) z ) ` k ) o. ( b ` w ) ) ` ( .1. ` w ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( b ` w ) ` ( .1. ` w ) ) ) ) |
249 |
248
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( w ( 2nd ` h ) z ) ` k ) o. ( b ` w ) ) ` ( .1. ` w ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( b ` w ) ` ( .1. ` w ) ) ) ) |
250 |
242 247 249
|
3eqtr3d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( b ` z ) ` ( ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ` ( .1. ` w ) ) ) = ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( b ` w ) ` ( .1. ` w ) ) ) ) |
251 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
252 |
243
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( .1. ` w ) e. ( w ( Hom ` C ) w ) ) |
253 |
1 2 164 169 107 169 251 171 172 252
|
yon12 |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ` ( .1. ` w ) ) = ( ( .1. ` w ) ( <. z , w >. ( comp ` C ) w ) k ) ) |
254 |
2 107 3 164 171 251 169 172
|
catlid |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( .1. ` w ) ( <. z , w >. ( comp ` C ) w ) k ) = k ) |
255 |
253 254
|
eqtrd |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ` ( .1. ` w ) ) = k ) |
256 |
255
|
fveq2d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( b ` z ) ` ( ( ( w ( 2nd ` ( ( 1st ` Y ) ` w ) ) z ) ` k ) ` ( .1. ` w ) ) ) = ( ( b ` z ) ` k ) ) |
257 |
250 256
|
eqtr3d |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( w ( 2nd ` h ) z ) ` k ) ` ( ( b ` w ) ` ( .1. ` w ) ) ) = ( ( b ` z ) ` k ) ) |
258 |
173 184 257
|
3eqtrd |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( z ( Hom ` C ) w ) ) -> ( ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) ` k ) = ( ( b ` z ) ` k ) ) |
259 |
163 258
|
syldan |
|- ( ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) /\ k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ) -> ( ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) ` k ) = ( ( b ` z ) ` k ) ) |
260 |
259
|
mpteq2dva |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) |-> ( ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) ` k ) ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) |-> ( ( b ` z ) ` k ) ) ) |
261 |
152
|
adantr |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( h N w ) ` ( ( h M w ) ` b ) ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` w ) ) , ( 2nd ` ( ( 1st ` Y ) ` w ) ) >. ( O Nat S ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
262 |
141 261 21 217 160
|
natcl |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) ) |
263 |
5 192 217 209 215
|
elsetchom |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) ( Hom ` S ) ( ( 1st ` h ) ` z ) ) <-> ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) --> ( ( 1st ` h ) ` z ) ) ) |
264 |
262 263
|
mpbid |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) --> ( ( 1st ` h ) ` z ) ) |
265 |
264
|
feqmptd |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) |-> ( ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) ` k ) ) ) |
266 |
226
|
feqmptd |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( b ` z ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` w ) ) ` z ) |-> ( ( b ` z ) ` k ) ) ) |
267 |
260 265 266
|
3eqtr4d |
|- ( ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) /\ z e. B ) -> ( ( ( h N w ) ` ( ( h M w ) ` b ) ) ` z ) = ( b ` z ) ) |
268 |
153 157 267
|
eqfnfvd |
|- ( ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) /\ b e. ( h ( 1st ` Z ) w ) ) -> ( ( h N w ) ` ( ( h M w ) ` b ) ) = b ) |
269 |
268
|
mpteq2dva |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( b e. ( h ( 1st ` Z ) w ) |-> ( ( h N w ) ` ( ( h M w ) ` b ) ) ) = ( b e. ( h ( 1st ` Z ) w ) |-> b ) ) |
270 |
|
mptresid |
|- ( _I |` ( h ( 1st ` Z ) w ) ) = ( b e. ( h ( 1st ` Z ) w ) |-> b ) |
271 |
269 270
|
eqtr4di |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( b e. ( h ( 1st ` Z ) w ) |-> ( ( h N w ) ` ( ( h M w ) ` b ) ) ) = ( _I |` ( h ( 1st ` Z ) w ) ) ) |
272 |
140 271
|
eqtrd |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h N w ) o. ( h M w ) ) = ( _I |` ( h ( 1st ` Z ) w ) ) ) |
273 |
|
fcof1o |
|- ( ( ( ( h M w ) : ( h ( 1st ` Z ) w ) --> ( h ( 1st ` E ) w ) /\ ( h N w ) : ( h ( 1st ` E ) w ) --> ( h ( 1st ` Z ) w ) ) /\ ( ( ( h M w ) o. ( h N w ) ) = ( _I |` ( h ( 1st ` E ) w ) ) /\ ( ( h N w ) o. ( h M w ) ) = ( _I |` ( h ( 1st ` Z ) w ) ) ) ) -> ( ( h M w ) : ( h ( 1st ` Z ) w ) -1-1-onto-> ( h ( 1st ` E ) w ) /\ `' ( h M w ) = ( h N w ) ) ) |
274 |
36 84 138 272 273
|
syl22anc |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) : ( h ( 1st ` Z ) w ) -1-1-onto-> ( h ( 1st ` E ) w ) /\ `' ( h M w ) = ( h N w ) ) ) |
275 |
|
eqcom |
|- ( `' ( h M w ) = ( h N w ) <-> ( h N w ) = `' ( h M w ) ) |
276 |
275
|
anbi2i |
|- ( ( ( h M w ) : ( h ( 1st ` Z ) w ) -1-1-onto-> ( h ( 1st ` E ) w ) /\ `' ( h M w ) = ( h N w ) ) <-> ( ( h M w ) : ( h ( 1st ` Z ) w ) -1-1-onto-> ( h ( 1st ` E ) w ) /\ ( h N w ) = `' ( h M w ) ) ) |
277 |
274 276
|
sylib |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) : ( h ( 1st ` Z ) w ) -1-1-onto-> ( h ( 1st ` E ) w ) /\ ( h N w ) = `' ( h M w ) ) ) |
278 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
279 |
|
relfunc |
|- Rel ( ( Q Xc. O ) Func T ) |
280 |
|
1st2ndbr |
|- ( ( Rel ( ( Q Xc. O ) Func T ) /\ Z e. ( ( Q Xc. O ) Func T ) ) -> ( 1st ` Z ) ( ( Q Xc. O ) Func T ) ( 2nd ` Z ) ) |
281 |
279 25 280
|
sylancr |
|- ( ph -> ( 1st ` Z ) ( ( Q Xc. O ) Func T ) ( 2nd ` Z ) ) |
282 |
22 278 281
|
funcf1 |
|- ( ph -> ( 1st ` Z ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) |
283 |
6 13
|
setcbas |
|- ( ph -> V = ( Base ` T ) ) |
284 |
283
|
feq3d |
|- ( ph -> ( ( 1st ` Z ) : ( ( O Func S ) X. B ) --> V <-> ( 1st ` Z ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) ) |
285 |
282 284
|
mpbird |
|- ( ph -> ( 1st ` Z ) : ( ( O Func S ) X. B ) --> V ) |
286 |
285
|
fovrnda |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h ( 1st ` Z ) w ) e. V ) |
287 |
|
1st2ndbr |
|- ( ( Rel ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) -> ( 1st ` E ) ( ( Q Xc. O ) Func T ) ( 2nd ` E ) ) |
288 |
279 26 287
|
sylancr |
|- ( ph -> ( 1st ` E ) ( ( Q Xc. O ) Func T ) ( 2nd ` E ) ) |
289 |
22 278 288
|
funcf1 |
|- ( ph -> ( 1st ` E ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) |
290 |
283
|
feq3d |
|- ( ph -> ( ( 1st ` E ) : ( ( O Func S ) X. B ) --> V <-> ( 1st ` E ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) ) |
291 |
289 290
|
mpbird |
|- ( ph -> ( 1st ` E ) : ( ( O Func S ) X. B ) --> V ) |
292 |
291
|
fovrnda |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h ( 1st ` E ) w ) e. V ) |
293 |
6 30 286 292 27
|
setcinv |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( ( h M w ) ( ( h ( 1st ` Z ) w ) ( Inv ` T ) ( h ( 1st ` E ) w ) ) ( h N w ) <-> ( ( h M w ) : ( h ( 1st ` Z ) w ) -1-1-onto-> ( h ( 1st ` E ) w ) /\ ( h N w ) = `' ( h M w ) ) ) ) |
294 |
277 293
|
mpbird |
|- ( ( ph /\ ( h e. ( O Func S ) /\ w e. B ) ) -> ( h M w ) ( ( h ( 1st ` Z ) w ) ( Inv ` T ) ( h ( 1st ` E ) w ) ) ( h N w ) ) |
295 |
294
|
ralrimivva |
|- ( ph -> A. h e. ( O Func S ) A. w e. B ( h M w ) ( ( h ( 1st ` Z ) w ) ( Inv ` T ) ( h ( 1st ` E ) w ) ) ( h N w ) ) |
296 |
|
fveq2 |
|- ( z = <. h , w >. -> ( M ` z ) = ( M ` <. h , w >. ) ) |
297 |
|
df-ov |
|- ( h M w ) = ( M ` <. h , w >. ) |
298 |
296 297
|
eqtr4di |
|- ( z = <. h , w >. -> ( M ` z ) = ( h M w ) ) |
299 |
|
fveq2 |
|- ( z = <. h , w >. -> ( ( 1st ` Z ) ` z ) = ( ( 1st ` Z ) ` <. h , w >. ) ) |
300 |
|
df-ov |
|- ( h ( 1st ` Z ) w ) = ( ( 1st ` Z ) ` <. h , w >. ) |
301 |
299 300
|
eqtr4di |
|- ( z = <. h , w >. -> ( ( 1st ` Z ) ` z ) = ( h ( 1st ` Z ) w ) ) |
302 |
|
fveq2 |
|- ( z = <. h , w >. -> ( ( 1st ` E ) ` z ) = ( ( 1st ` E ) ` <. h , w >. ) ) |
303 |
|
df-ov |
|- ( h ( 1st ` E ) w ) = ( ( 1st ` E ) ` <. h , w >. ) |
304 |
302 303
|
eqtr4di |
|- ( z = <. h , w >. -> ( ( 1st ` E ) ` z ) = ( h ( 1st ` E ) w ) ) |
305 |
301 304
|
oveq12d |
|- ( z = <. h , w >. -> ( ( ( 1st ` Z ) ` z ) ( Inv ` T ) ( ( 1st ` E ) ` z ) ) = ( ( h ( 1st ` Z ) w ) ( Inv ` T ) ( h ( 1st ` E ) w ) ) ) |
306 |
|
fveq2 |
|- ( z = <. h , w >. -> ( N ` z ) = ( N ` <. h , w >. ) ) |
307 |
|
df-ov |
|- ( h N w ) = ( N ` <. h , w >. ) |
308 |
306 307
|
eqtr4di |
|- ( z = <. h , w >. -> ( N ` z ) = ( h N w ) ) |
309 |
298 305 308
|
breq123d |
|- ( z = <. h , w >. -> ( ( M ` z ) ( ( ( 1st ` Z ) ` z ) ( Inv ` T ) ( ( 1st ` E ) ` z ) ) ( N ` z ) <-> ( h M w ) ( ( h ( 1st ` Z ) w ) ( Inv ` T ) ( h ( 1st ` E ) w ) ) ( h N w ) ) ) |
310 |
309
|
ralxp |
|- ( A. z e. ( ( O Func S ) X. B ) ( M ` z ) ( ( ( 1st ` Z ) ` z ) ( Inv ` T ) ( ( 1st ` E ) ` z ) ) ( N ` z ) <-> A. h e. ( O Func S ) A. w e. B ( h M w ) ( ( h ( 1st ` Z ) w ) ( Inv ` T ) ( h ( 1st ` E ) w ) ) ( h N w ) ) |
311 |
295 310
|
sylibr |
|- ( ph -> A. z e. ( ( O Func S ) X. B ) ( M ` z ) ( ( ( 1st ` Z ) ` z ) ( Inv ` T ) ( ( 1st ` E ) ` z ) ) ( N ` z ) ) |
312 |
311
|
r19.21bi |
|- ( ( ph /\ z e. ( ( O Func S ) X. B ) ) -> ( M ` z ) ( ( ( 1st ` Z ) ` z ) ( Inv ` T ) ( ( 1st ` E ) ` z ) ) ( N ` z ) ) |
313 |
9 22 23 25 26 17 27 28 312
|
invfuc |
|- ( ph -> M ( Z I E ) ( z e. ( ( O Func S ) X. B ) |-> ( N ` z ) ) ) |
314 |
|
fvex |
|- ( ( 1st ` f ) ` x ) e. _V |
315 |
314
|
mptex |
|- ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) e. _V |
316 |
18 315
|
fnmpoi |
|- N Fn ( ( O Func S ) X. B ) |
317 |
|
dffn5 |
|- ( N Fn ( ( O Func S ) X. B ) <-> N = ( z e. ( ( O Func S ) X. B ) |-> ( N ` z ) ) ) |
318 |
316 317
|
mpbi |
|- N = ( z e. ( ( O Func S ) X. B ) |-> ( N ` z ) ) |
319 |
313 318
|
breqtrrdi |
|- ( ph -> M ( Z I E ) N ) |