Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yonedalem21.f |
|- ( ph -> F e. ( O Func S ) ) |
17 |
|
yonedalem21.x |
|- ( ph -> X e. B ) |
18 |
|
yonedalem4.n |
|- N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
19 |
|
yonedalem4.p |
|- ( ph -> A e. ( ( 1st ` F ) ` X ) ) |
20 |
|
yonedalem4b.p |
|- ( ph -> P e. B ) |
21 |
|
yonedalem4b.g |
|- ( ph -> G e. ( P ( Hom ` C ) X ) ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
yonedalem4a |
|- ( ph -> ( ( F N X ) ` A ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ) |
23 |
22
|
fveq1d |
|- ( ph -> ( ( ( F N X ) ` A ) ` P ) = ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ) |
24 |
23
|
fveq1d |
|- ( ph -> ( ( ( ( F N X ) ` A ) ` P ) ` G ) = ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ` G ) ) |
25 |
|
eqidd |
|- ( ph -> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ) |
26 |
|
ovex |
|- ( y ( Hom ` C ) X ) e. _V |
27 |
26
|
mptex |
|- ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) e. _V |
28 |
27
|
a1i |
|- ( ( ph /\ y = P ) -> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) e. _V ) |
29 |
21
|
adantr |
|- ( ( ph /\ y = P ) -> G e. ( P ( Hom ` C ) X ) ) |
30 |
|
simpr |
|- ( ( ph /\ y = P ) -> y = P ) |
31 |
30
|
oveq1d |
|- ( ( ph /\ y = P ) -> ( y ( Hom ` C ) X ) = ( P ( Hom ` C ) X ) ) |
32 |
29 31
|
eleqtrrd |
|- ( ( ph /\ y = P ) -> G e. ( y ( Hom ` C ) X ) ) |
33 |
|
fvexd |
|- ( ( ( ph /\ y = P ) /\ g = G ) -> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) e. _V ) |
34 |
|
simplr |
|- ( ( ( ph /\ y = P ) /\ g = G ) -> y = P ) |
35 |
34
|
oveq2d |
|- ( ( ( ph /\ y = P ) /\ g = G ) -> ( X ( 2nd ` F ) y ) = ( X ( 2nd ` F ) P ) ) |
36 |
|
simpr |
|- ( ( ( ph /\ y = P ) /\ g = G ) -> g = G ) |
37 |
35 36
|
fveq12d |
|- ( ( ( ph /\ y = P ) /\ g = G ) -> ( ( X ( 2nd ` F ) y ) ` g ) = ( ( X ( 2nd ` F ) P ) ` G ) ) |
38 |
37
|
fveq1d |
|- ( ( ( ph /\ y = P ) /\ g = G ) -> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) = ( ( ( X ( 2nd ` F ) P ) ` G ) ` A ) ) |
39 |
32 33 38
|
fvmptdv2 |
|- ( ( ph /\ y = P ) -> ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) = ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) -> ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ` G ) = ( ( ( X ( 2nd ` F ) P ) ` G ) ` A ) ) ) |
40 |
|
nfmpt1 |
|- F/_ y ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) |
41 |
|
nffvmpt1 |
|- F/_ y ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) |
42 |
|
nfcv |
|- F/_ y G |
43 |
41 42
|
nffv |
|- F/_ y ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ` G ) |
44 |
43
|
nfeq1 |
|- F/ y ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ` G ) = ( ( ( X ( 2nd ` F ) P ) ` G ) ` A ) |
45 |
20 28 39 40 44
|
fvmptd2f |
|- ( ph -> ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) -> ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ` G ) = ( ( ( X ( 2nd ` F ) P ) ` G ) ` A ) ) ) |
46 |
25 45
|
mpd |
|- ( ph -> ( ( ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ` P ) ` G ) = ( ( ( X ( 2nd ` F ) P ) ` G ) ` A ) ) |
47 |
24 46
|
eqtrd |
|- ( ph -> ( ( ( ( F N X ) ` A ) ` P ) ` G ) = ( ( ( X ( 2nd ` F ) P ) ` G ) ` A ) ) |