Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yonedalem21.f |
|- ( ph -> F e. ( O Func S ) ) |
17 |
|
yonedalem21.x |
|- ( ph -> X e. B ) |
18 |
|
yonedalem4.n |
|- N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
19 |
|
yonedalem4.p |
|- ( ph -> A e. ( ( 1st ` F ) ` X ) ) |
20 |
18
|
a1i |
|- ( ph -> N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) ) |
21 |
|
simprl |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> f = F ) |
22 |
21
|
fveq2d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( 1st ` f ) = ( 1st ` F ) ) |
23 |
|
simprr |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> x = X ) |
24 |
22 23
|
fveq12d |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` X ) ) |
25 |
|
simplrr |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> x = X ) |
26 |
25
|
oveq2d |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> ( y ( Hom ` C ) x ) = ( y ( Hom ` C ) X ) ) |
27 |
|
simplrl |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> f = F ) |
28 |
27
|
fveq2d |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> ( 2nd ` f ) = ( 2nd ` F ) ) |
29 |
|
eqidd |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> y = y ) |
30 |
28 25 29
|
oveq123d |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> ( x ( 2nd ` f ) y ) = ( X ( 2nd ` F ) y ) ) |
31 |
30
|
fveq1d |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> ( ( x ( 2nd ` f ) y ) ` g ) = ( ( X ( 2nd ` F ) y ) ` g ) ) |
32 |
31
|
fveq1d |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) = ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) |
33 |
26 32
|
mpteq12dv |
|- ( ( ( ph /\ ( f = F /\ x = X ) ) /\ y e. B ) -> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) = ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) |
34 |
33
|
mpteq2dva |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) ) |
35 |
24 34
|
mpteq12dv |
|- ( ( ph /\ ( f = F /\ x = X ) ) -> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) = ( u e. ( ( 1st ` F ) ` X ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) ) ) |
36 |
|
fvex |
|- ( ( 1st ` F ) ` X ) e. _V |
37 |
36
|
mptex |
|- ( u e. ( ( 1st ` F ) ` X ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) ) e. _V |
38 |
37
|
a1i |
|- ( ph -> ( u e. ( ( 1st ` F ) ` X ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) ) e. _V ) |
39 |
20 35 16 17 38
|
ovmpod |
|- ( ph -> ( F N X ) = ( u e. ( ( 1st ` F ) ` X ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) ) ) |
40 |
|
simpr |
|- ( ( ph /\ u = A ) -> u = A ) |
41 |
40
|
fveq2d |
|- ( ( ph /\ u = A ) -> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) = ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) |
42 |
41
|
mpteq2dv |
|- ( ( ph /\ u = A ) -> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) = ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) |
43 |
42
|
mpteq2dv |
|- ( ( ph /\ u = A ) -> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` u ) ) ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ) |
44 |
2
|
fvexi |
|- B e. _V |
45 |
44
|
mptex |
|- ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) e. _V |
46 |
45
|
a1i |
|- ( ph -> ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) e. _V ) |
47 |
39 43 19 46
|
fvmptd |
|- ( ph -> ( ( F N X ) ` A ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ) |