Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yoneda.m |
|- M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) ) |
17 |
|
yoneda.i |
|- I = ( Iso ` R ) |
18 |
9
|
fucbas |
|- ( ( Q Xc. O ) Func T ) = ( Base ` R ) |
19 |
|
eqid |
|- ( Inv ` R ) = ( Inv ` R ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
yonedalem1 |
|- ( ph -> ( Z e. ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) ) |
21 |
20
|
simpld |
|- ( ph -> Z e. ( ( Q Xc. O ) Func T ) ) |
22 |
|
funcrcl |
|- ( Z e. ( ( Q Xc. O ) Func T ) -> ( ( Q Xc. O ) e. Cat /\ T e. Cat ) ) |
23 |
21 22
|
syl |
|- ( ph -> ( ( Q Xc. O ) e. Cat /\ T e. Cat ) ) |
24 |
23
|
simpld |
|- ( ph -> ( Q Xc. O ) e. Cat ) |
25 |
23
|
simprd |
|- ( ph -> T e. Cat ) |
26 |
9 24 25
|
fuccat |
|- ( ph -> R e. Cat ) |
27 |
20
|
simprd |
|- ( ph -> E e. ( ( Q Xc. O ) Func T ) ) |
28 |
|
eqid |
|- ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 28
|
yonedainv |
|- ( ph -> M ( Z ( Inv ` R ) E ) ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) ) |
30 |
18 19 26 21 27 17 29
|
inviso1 |
|- ( ph -> M e. ( Z I E ) ) |