Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yonedalem21.f |
|- ( ph -> F e. ( O Func S ) ) |
17 |
|
yonedalem21.x |
|- ( ph -> X e. B ) |
18 |
|
yonedalem4.n |
|- N = ( f e. ( O Func S ) , x e. B |-> ( u e. ( ( 1st ` f ) ` x ) |-> ( y e. B |-> ( g e. ( y ( Hom ` C ) x ) |-> ( ( ( x ( 2nd ` f ) y ) ` g ) ` u ) ) ) ) ) |
19 |
|
yonedalem4.p |
|- ( ph -> A e. ( ( 1st ` F ) ` X ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
yonedalem4a |
|- ( ph -> ( ( F N X ) ` A ) = ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) ) |
21 |
|
oveq1 |
|- ( y = z -> ( y ( Hom ` C ) X ) = ( z ( Hom ` C ) X ) ) |
22 |
|
oveq2 |
|- ( y = z -> ( X ( 2nd ` F ) y ) = ( X ( 2nd ` F ) z ) ) |
23 |
22
|
fveq1d |
|- ( y = z -> ( ( X ( 2nd ` F ) y ) ` g ) = ( ( X ( 2nd ` F ) z ) ` g ) ) |
24 |
23
|
fveq1d |
|- ( y = z -> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) = ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) |
25 |
21 24
|
mpteq12dv |
|- ( y = z -> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) = ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) |
26 |
25
|
cbvmptv |
|- ( y e. B |-> ( g e. ( y ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) y ) ` g ) ` A ) ) ) = ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) |
27 |
20 26
|
eqtrdi |
|- ( ph -> ( ( F N X ) ` A ) = ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) ) |
28 |
4 2
|
oppcbas |
|- B = ( Base ` O ) |
29 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
30 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
31 |
|
relfunc |
|- Rel ( O Func S ) |
32 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ F e. ( O Func S ) ) -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
33 |
31 16 32
|
sylancr |
|- ( ph -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ z e. B ) -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
35 |
17
|
adantr |
|- ( ( ph /\ z e. B ) -> X e. B ) |
36 |
|
simpr |
|- ( ( ph /\ z e. B ) -> z e. B ) |
37 |
28 29 30 34 35 36
|
funcf2 |
|- ( ( ph /\ z e. B ) -> ( X ( 2nd ` F ) z ) : ( X ( Hom ` O ) z ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
38 |
37
|
adantr |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( X ( 2nd ` F ) z ) : ( X ( Hom ` O ) z ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
39 |
|
simpr |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> g e. ( z ( Hom ` C ) X ) ) |
40 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
41 |
40 4
|
oppchom |
|- ( X ( Hom ` O ) z ) = ( z ( Hom ` C ) X ) |
42 |
39 41
|
eleqtrrdi |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> g e. ( X ( Hom ` O ) z ) ) |
43 |
38 42
|
ffvelrnd |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) z ) ` g ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
44 |
15
|
unssbd |
|- ( ph -> U C_ V ) |
45 |
13 44
|
ssexd |
|- ( ph -> U e. _V ) |
46 |
45
|
adantr |
|- ( ( ph /\ z e. B ) -> U e. _V ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> U e. _V ) |
48 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
49 |
28 48 33
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` S ) ) |
50 |
5 45
|
setcbas |
|- ( ph -> U = ( Base ` S ) ) |
51 |
50
|
feq3d |
|- ( ph -> ( ( 1st ` F ) : B --> U <-> ( 1st ` F ) : B --> ( Base ` S ) ) ) |
52 |
49 51
|
mpbird |
|- ( ph -> ( 1st ` F ) : B --> U ) |
53 |
52 17
|
ffvelrnd |
|- ( ph -> ( ( 1st ` F ) ` X ) e. U ) |
54 |
53
|
ad2antrr |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( ( 1st ` F ) ` X ) e. U ) |
55 |
52
|
ffvelrnda |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` F ) ` z ) e. U ) |
56 |
55
|
adantr |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( ( 1st ` F ) ` z ) e. U ) |
57 |
5 47 30 54 56
|
elsetchom |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( ( ( X ( 2nd ` F ) z ) ` g ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) <-> ( ( X ( 2nd ` F ) z ) ` g ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` z ) ) ) |
58 |
43 57
|
mpbid |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) z ) ` g ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` z ) ) |
59 |
19
|
ad2antrr |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> A e. ( ( 1st ` F ) ` X ) ) |
60 |
58 59
|
ffvelrnd |
|- ( ( ( ph /\ z e. B ) /\ g e. ( z ( Hom ` C ) X ) ) -> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) e. ( ( 1st ` F ) ` z ) ) |
61 |
60
|
fmpttd |
|- ( ( ph /\ z e. B ) -> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) : ( z ( Hom ` C ) X ) --> ( ( 1st ` F ) ` z ) ) |
62 |
12
|
adantr |
|- ( ( ph /\ z e. B ) -> C e. Cat ) |
63 |
1 2 62 35 40 36
|
yon11 |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) = ( z ( Hom ` C ) X ) ) |
64 |
63
|
feq2d |
|- ( ( ph /\ z e. B ) -> ( ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) <-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) : ( z ( Hom ` C ) X ) --> ( ( 1st ` F ) ` z ) ) ) |
65 |
61 64
|
mpbird |
|- ( ( ph /\ z e. B ) -> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) |
66 |
1 2 12 17 4 5 45 14
|
yon1cl |
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( O Func S ) ) |
67 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` X ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` X ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` X ) ) ) |
68 |
31 66 67
|
sylancr |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` X ) ) ) |
69 |
28 48 68
|
funcf1 |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> ( Base ` S ) ) |
70 |
50
|
feq3d |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> U <-> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> ( Base ` S ) ) ) |
71 |
69 70
|
mpbird |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> U ) |
72 |
71
|
ffvelrnda |
|- ( ( ph /\ z e. B ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) e. U ) |
73 |
5 46 30 72 55
|
elsetchom |
|- ( ( ph /\ z e. B ) -> ( ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) <-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) ) |
74 |
65 73
|
mpbird |
|- ( ( ph /\ z e. B ) -> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
75 |
74
|
ralrimiva |
|- ( ph -> A. z e. B ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
76 |
2
|
fvexi |
|- B e. _V |
77 |
|
mptelixpg |
|- ( B e. _V -> ( ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) <-> A. z e. B ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) ) |
78 |
76 77
|
ax-mp |
|- ( ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) <-> A. z e. B ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
79 |
75 78
|
sylibr |
|- ( ph -> ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
80 |
27 79
|
eqeltrd |
|- ( ph -> ( ( F N X ) ` A ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
81 |
12
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> C e. Cat ) |
82 |
17
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> X e. B ) |
83 |
|
simpr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> z e. B ) |
84 |
1 2 81 82 40 83
|
yon11 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) = ( z ( Hom ` C ) X ) ) |
85 |
84
|
eleq2d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) <-> k e. ( z ( Hom ` C ) X ) ) ) |
86 |
85
|
biimpa |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ) -> k e. ( z ( Hom ` C ) X ) ) |
87 |
|
eqid |
|- ( comp ` O ) = ( comp ` O ) |
88 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
89 |
33
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
90 |
89
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
91 |
82
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> X e. B ) |
92 |
83
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> z e. B ) |
93 |
|
simpr2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> w e. B ) |
94 |
93
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> w e. B ) |
95 |
|
simpr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> k e. ( z ( Hom ` C ) X ) ) |
96 |
95 41
|
eleqtrrdi |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> k e. ( X ( Hom ` O ) z ) ) |
97 |
|
simplr3 |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> h e. ( z ( Hom ` O ) w ) ) |
98 |
28 29 87 88 90 91 92 94 96 97
|
funcco |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) w ) ` ( h ( <. X , z >. ( comp ` O ) w ) k ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` z ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( X ( 2nd ` F ) z ) ` k ) ) ) |
99 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
100 |
2 99 4 91 92 94
|
oppcco |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( h ( <. X , z >. ( comp ` O ) w ) k ) = ( k ( <. w , z >. ( comp ` C ) X ) h ) ) |
101 |
100
|
fveq2d |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) w ) ` ( h ( <. X , z >. ( comp ` O ) w ) k ) ) = ( ( X ( 2nd ` F ) w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) ) |
102 |
45
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> U e. _V ) |
103 |
102
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> U e. _V ) |
104 |
53
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( 1st ` F ) ` X ) e. U ) |
105 |
55
|
3ad2antr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( 1st ` F ) ` z ) e. U ) |
106 |
105
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( 1st ` F ) ` z ) e. U ) |
107 |
52
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( 1st ` F ) : B --> U ) |
108 |
107 93
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( 1st ` F ) ` w ) e. U ) |
109 |
108
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( 1st ` F ) ` w ) e. U ) |
110 |
28 29 30 89 82 83
|
funcf2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( X ( 2nd ` F ) z ) : ( X ( Hom ` O ) z ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
111 |
110
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( X ( 2nd ` F ) z ) : ( X ( Hom ` O ) z ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
112 |
111 96
|
ffvelrnd |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) z ) ` k ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) ) |
113 |
5 103 30 104 106
|
elsetchom |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( X ( 2nd ` F ) z ) ` k ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) <-> ( ( X ( 2nd ` F ) z ) ` k ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` z ) ) ) |
114 |
112 113
|
mpbid |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) z ) ` k ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` z ) ) |
115 |
28 29 30 89 83 93
|
funcf2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( z ( 2nd ` F ) w ) : ( z ( Hom ` O ) w ) --> ( ( ( 1st ` F ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` w ) ) ) |
116 |
|
simpr3 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> h e. ( z ( Hom ` O ) w ) ) |
117 |
115 116
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( z ( 2nd ` F ) w ) ` h ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` w ) ) ) |
118 |
5 102 30 105 108
|
elsetchom |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( z ( 2nd ` F ) w ) ` h ) e. ( ( ( 1st ` F ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` w ) ) <-> ( ( z ( 2nd ` F ) w ) ` h ) : ( ( 1st ` F ) ` z ) --> ( ( 1st ` F ) ` w ) ) ) |
119 |
117 118
|
mpbid |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( z ( 2nd ` F ) w ) ` h ) : ( ( 1st ` F ) ` z ) --> ( ( 1st ` F ) ` w ) ) |
120 |
119
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( z ( 2nd ` F ) w ) ` h ) : ( ( 1st ` F ) ` z ) --> ( ( 1st ` F ) ` w ) ) |
121 |
5 103 88 104 106 109 114 120
|
setcco |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( z ( 2nd ` F ) w ) ` h ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` z ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( X ( 2nd ` F ) z ) ` k ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( X ( 2nd ` F ) z ) ` k ) ) ) |
122 |
98 101 121
|
3eqtr3d |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( X ( 2nd ` F ) w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( X ( 2nd ` F ) z ) ` k ) ) ) |
123 |
122
|
fveq1d |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( X ( 2nd ` F ) w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) ` A ) = ( ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( X ( 2nd ` F ) z ) ` k ) ) ` A ) ) |
124 |
19
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> A e. ( ( 1st ` F ) ` X ) ) |
125 |
|
fvco3 |
|- ( ( ( ( X ( 2nd ` F ) z ) ` k ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` z ) /\ A e. ( ( 1st ` F ) ` X ) ) -> ( ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( X ( 2nd ` F ) z ) ` k ) ) ` A ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( X ( 2nd ` F ) z ) ` k ) ` A ) ) ) |
126 |
114 124 125
|
syl2anc |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( X ( 2nd ` F ) z ) ` k ) ) ` A ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( X ( 2nd ` F ) z ) ` k ) ` A ) ) ) |
127 |
123 126
|
eqtrd |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( X ( 2nd ` F ) w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) ` A ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( X ( 2nd ` F ) z ) ` k ) ` A ) ) ) |
128 |
81
|
adantr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> C e. Cat ) |
129 |
40 4
|
oppchom |
|- ( z ( Hom ` O ) w ) = ( w ( Hom ` C ) z ) |
130 |
97 129
|
eleqtrdi |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> h e. ( w ( Hom ` C ) z ) ) |
131 |
1 2 128 91 40 92 99 94 130 95
|
yon12 |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) = ( k ( <. w , z >. ( comp ` C ) X ) h ) ) |
132 |
131
|
fveq2d |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) = ( ( ( ( F N X ) ` A ) ` w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) ) |
133 |
13
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> V e. W ) |
134 |
14
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ran ( Homf ` C ) C_ U ) |
135 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
136 |
16
|
ad2antrr |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> F e. ( O Func S ) ) |
137 |
2 40 99 128 94 92 91 130 95
|
catcocl |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( k ( <. w , z >. ( comp ` C ) X ) h ) e. ( w ( Hom ` C ) X ) ) |
138 |
1 2 3 4 5 6 7 8 9 10 11 128 133 134 135 136 91 18 124 94 137
|
yonedalem4b |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) = ( ( ( X ( 2nd ` F ) w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) ` A ) ) |
139 |
132 138
|
eqtrd |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) = ( ( ( X ( 2nd ` F ) w ) ` ( k ( <. w , z >. ( comp ` C ) X ) h ) ) ` A ) ) |
140 |
1 2 3 4 5 6 7 8 9 10 11 128 133 134 135 136 91 18 124 92 95
|
yonedalem4b |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( ( F N X ) ` A ) ` z ) ` k ) = ( ( ( X ( 2nd ` F ) z ) ` k ) ` A ) ) |
141 |
140
|
fveq2d |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( ( F N X ) ` A ) ` z ) ` k ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( X ( 2nd ` F ) z ) ` k ) ` A ) ) ) |
142 |
127 139 141
|
3eqtr4d |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( z ( Hom ` C ) X ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( ( F N X ) ` A ) ` z ) ` k ) ) ) |
143 |
86 142
|
syldan |
|- ( ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) /\ k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( ( F N X ) ` A ) ` z ) ` k ) ) ) |
144 |
143
|
mpteq2dva |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) |-> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) |-> ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( ( F N X ) ` A ) ` z ) ` k ) ) ) ) |
145 |
|
fveq2 |
|- ( z = w -> ( ( ( F N X ) ` A ) ` z ) = ( ( ( F N X ) ` A ) ` w ) ) |
146 |
|
fveq2 |
|- ( z = w -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) = ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) |
147 |
|
fveq2 |
|- ( z = w -> ( ( 1st ` F ) ` z ) = ( ( 1st ` F ) ` w ) ) |
148 |
145 146 147
|
feq123d |
|- ( z = w -> ( ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) <-> ( ( ( F N X ) ` A ) ` w ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) --> ( ( 1st ` F ) ` w ) ) ) |
149 |
27
|
fveq1d |
|- ( ph -> ( ( ( F N X ) ` A ) ` z ) = ( ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) ` z ) ) |
150 |
|
ovex |
|- ( z ( Hom ` C ) X ) e. _V |
151 |
150
|
mptex |
|- ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. _V |
152 |
|
eqid |
|- ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) = ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) |
153 |
152
|
fvmpt2 |
|- ( ( z e. B /\ ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) e. _V ) -> ( ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) ` z ) = ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) |
154 |
151 153
|
mpan2 |
|- ( z e. B -> ( ( z e. B |-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) ` z ) = ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) |
155 |
149 154
|
sylan9eq |
|- ( ( ph /\ z e. B ) -> ( ( ( F N X ) ` A ) ` z ) = ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) ) |
156 |
155
|
feq1d |
|- ( ( ph /\ z e. B ) -> ( ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) <-> ( g e. ( z ( Hom ` C ) X ) |-> ( ( ( X ( 2nd ` F ) z ) ` g ) ` A ) ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) ) |
157 |
65 156
|
mpbird |
|- ( ( ph /\ z e. B ) -> ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) |
158 |
157
|
ralrimiva |
|- ( ph -> A. z e. B ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) |
159 |
158
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> A. z e. B ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) |
160 |
148 159 93
|
rspcdva |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( F N X ) ` A ) ` w ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) --> ( ( 1st ` F ) ` w ) ) |
161 |
68
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( 1st ` ( ( 1st ` Y ) ` X ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` X ) ) ) |
162 |
28 29 30 161 83 93
|
funcf2 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) : ( z ( Hom ` O ) w ) --> ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) ) |
163 |
162 116
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) ) |
164 |
72
|
3ad2antr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) e. U ) |
165 |
71
|
adantr |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> U ) |
166 |
165 93
|
ffvelrnd |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) e. U ) |
167 |
5 102 30 164 166
|
elsetchom |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) <-> ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) ) |
168 |
163 167
|
mpbid |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) |
169 |
|
fcompt |
|- ( ( ( ( ( F N X ) ` A ) ` w ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) --> ( ( 1st ` F ) ` w ) /\ ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) ) -> ( ( ( ( F N X ) ` A ) ` w ) o. ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) |-> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) ) ) |
170 |
160 168 169
|
syl2anc |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( ( F N X ) ` A ) ` w ) o. ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) |-> ( ( ( ( F N X ) ` A ) ` w ) ` ( ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ` k ) ) ) ) |
171 |
157
|
3ad2antr1 |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) |
172 |
|
fcompt |
|- ( ( ( ( z ( 2nd ` F ) w ) ` h ) : ( ( 1st ` F ) ` z ) --> ( ( 1st ` F ) ` w ) /\ ( ( ( F N X ) ` A ) ` z ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) --> ( ( 1st ` F ) ` z ) ) -> ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( ( F N X ) ` A ) ` z ) ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) |-> ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( ( F N X ) ` A ) ` z ) ` k ) ) ) ) |
173 |
119 171 172
|
syl2anc |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( ( F N X ) ` A ) ` z ) ) = ( k e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) |-> ( ( ( z ( 2nd ` F ) w ) ` h ) ` ( ( ( ( F N X ) ` A ) ` z ) ` k ) ) ) ) |
174 |
144 170 173
|
3eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( ( F N X ) ` A ) ` w ) o. ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( ( F N X ) ` A ) ` z ) ) ) |
175 |
5 102 88 164 166 108 168 160
|
setcco |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( ( ( ( F N X ) ` A ) ` w ) o. ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) ) |
176 |
5 102 88 164 105 108 171 119
|
setcco |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( z ( 2nd ` F ) w ) ` h ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` F ) ` z ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( ( F N X ) ` A ) ` z ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) o. ( ( ( F N X ) ` A ) ` z ) ) ) |
177 |
174 175 176
|
3eqtr4d |
|- ( ( ph /\ ( z e. B /\ w e. B /\ h e. ( z ( Hom ` O ) w ) ) ) -> ( ( ( ( F N X ) ` A ) ` w ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` F ) ` z ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( ( F N X ) ` A ) ` z ) ) ) |
178 |
177
|
ralrimivvva |
|- ( ph -> A. z e. B A. w e. B A. h e. ( z ( Hom ` O ) w ) ( ( ( ( F N X ) ` A ) ` w ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` F ) ` z ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( ( F N X ) ` A ) ` z ) ) ) |
179 |
|
eqid |
|- ( O Nat S ) = ( O Nat S ) |
180 |
179 28 29 30 88 66 16
|
isnat2 |
|- ( ph -> ( ( ( F N X ) ` A ) e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) <-> ( ( ( F N X ) ` A ) e. X_ z e. B ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) ( Hom ` S ) ( ( 1st ` F ) ` z ) ) /\ A. z e. B A. w e. B A. h e. ( z ( Hom ` O ) w ) ( ( ( ( F N X ) ` A ) ` w ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` w ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( z ( 2nd ` ( ( 1st ` Y ) ` X ) ) w ) ` h ) ) = ( ( ( z ( 2nd ` F ) w ) ` h ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` z ) , ( ( 1st ` F ) ` z ) >. ( comp ` S ) ( ( 1st ` F ) ` w ) ) ( ( ( F N X ) ` A ) ` z ) ) ) ) ) |
181 |
80 178 180
|
mpbir2and |
|- ( ph -> ( ( F N X ) ` A ) e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) |