Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yonedalem21.f |
|- ( ph -> F e. ( O Func S ) ) |
17 |
|
yonedalem21.x |
|- ( ph -> X e. B ) |
18 |
|
yonedalem22.g |
|- ( ph -> G e. ( O Func S ) ) |
19 |
|
yonedalem22.p |
|- ( ph -> P e. B ) |
20 |
|
yonedalem22.a |
|- ( ph -> A e. ( F ( O Nat S ) G ) ) |
21 |
|
yonedalem22.k |
|- ( ph -> K e. ( P ( Hom ` C ) X ) ) |
22 |
11
|
fveq2i |
|- ( 2nd ` Z ) = ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) |
23 |
22
|
oveqi |
|- ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) = ( <. F , X >. ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) <. G , P >. ) |
24 |
23
|
oveqi |
|- ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) = ( A ( <. F , X >. ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) <. G , P >. ) K ) |
25 |
|
df-ov |
|- ( A ( <. F , X >. ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) <. G , P >. ) K ) = ( ( <. F , X >. ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) <. G , P >. ) ` <. A , K >. ) |
26 |
24 25
|
eqtri |
|- ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) = ( ( <. F , X >. ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) <. G , P >. ) ` <. A , K >. ) |
27 |
|
eqid |
|- ( Q Xc. O ) = ( Q Xc. O ) |
28 |
7
|
fucbas |
|- ( O Func S ) = ( Base ` Q ) |
29 |
4 2
|
oppcbas |
|- B = ( Base ` O ) |
30 |
27 28 29
|
xpcbas |
|- ( ( O Func S ) X. B ) = ( Base ` ( Q Xc. O ) ) |
31 |
|
eqid |
|- ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) = ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) |
32 |
|
eqid |
|- ( ( oppCat ` Q ) Xc. Q ) = ( ( oppCat ` Q ) Xc. Q ) |
33 |
4
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
34 |
12 33
|
syl |
|- ( ph -> O e. Cat ) |
35 |
15
|
unssbd |
|- ( ph -> U C_ V ) |
36 |
13 35
|
ssexd |
|- ( ph -> U e. _V ) |
37 |
5
|
setccat |
|- ( U e. _V -> S e. Cat ) |
38 |
36 37
|
syl |
|- ( ph -> S e. Cat ) |
39 |
7 34 38
|
fuccat |
|- ( ph -> Q e. Cat ) |
40 |
|
eqid |
|- ( Q 2ndF O ) = ( Q 2ndF O ) |
41 |
27 39 34 40
|
2ndfcl |
|- ( ph -> ( Q 2ndF O ) e. ( ( Q Xc. O ) Func O ) ) |
42 |
|
eqid |
|- ( oppCat ` Q ) = ( oppCat ` Q ) |
43 |
|
relfunc |
|- Rel ( C Func Q ) |
44 |
1 12 4 5 7 36 14
|
yoncl |
|- ( ph -> Y e. ( C Func Q ) ) |
45 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
46 |
43 44 45
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
47 |
4 42 46
|
funcoppc |
|- ( ph -> ( 1st ` Y ) ( O Func ( oppCat ` Q ) ) tpos ( 2nd ` Y ) ) |
48 |
|
df-br |
|- ( ( 1st ` Y ) ( O Func ( oppCat ` Q ) ) tpos ( 2nd ` Y ) <-> <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. e. ( O Func ( oppCat ` Q ) ) ) |
49 |
47 48
|
sylib |
|- ( ph -> <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. e. ( O Func ( oppCat ` Q ) ) ) |
50 |
41 49
|
cofucl |
|- ( ph -> ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) e. ( ( Q Xc. O ) Func ( oppCat ` Q ) ) ) |
51 |
|
eqid |
|- ( Q 1stF O ) = ( Q 1stF O ) |
52 |
27 39 34 51
|
1stfcl |
|- ( ph -> ( Q 1stF O ) e. ( ( Q Xc. O ) Func Q ) ) |
53 |
31 32 50 52
|
prfcl |
|- ( ph -> ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) e. ( ( Q Xc. O ) Func ( ( oppCat ` Q ) Xc. Q ) ) ) |
54 |
15
|
unssad |
|- ( ph -> ran ( Homf ` Q ) C_ V ) |
55 |
8 42 6 39 13 54
|
hofcl |
|- ( ph -> H e. ( ( ( oppCat ` Q ) Xc. Q ) Func T ) ) |
56 |
16 17
|
opelxpd |
|- ( ph -> <. F , X >. e. ( ( O Func S ) X. B ) ) |
57 |
18 19
|
opelxpd |
|- ( ph -> <. G , P >. e. ( ( O Func S ) X. B ) ) |
58 |
|
eqid |
|- ( Hom ` ( Q Xc. O ) ) = ( Hom ` ( Q Xc. O ) ) |
59 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
60 |
59 4
|
oppchom |
|- ( X ( Hom ` O ) P ) = ( P ( Hom ` C ) X ) |
61 |
21 60
|
eleqtrrdi |
|- ( ph -> K e. ( X ( Hom ` O ) P ) ) |
62 |
20 61
|
opelxpd |
|- ( ph -> <. A , K >. e. ( ( F ( O Nat S ) G ) X. ( X ( Hom ` O ) P ) ) ) |
63 |
|
eqid |
|- ( O Nat S ) = ( O Nat S ) |
64 |
7 63
|
fuchom |
|- ( O Nat S ) = ( Hom ` Q ) |
65 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
66 |
27 28 29 64 65 16 17 18 19 58
|
xpchom2 |
|- ( ph -> ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) = ( ( F ( O Nat S ) G ) X. ( X ( Hom ` O ) P ) ) ) |
67 |
62 66
|
eleqtrrd |
|- ( ph -> <. A , K >. e. ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) |
68 |
30 53 55 56 57 58 67
|
cofu2 |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ) <. G , P >. ) ` <. A , K >. ) = ( ( ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) ( 2nd ` H ) ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) ) ` ( ( <. F , X >. ( 2nd ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) <. G , P >. ) ` <. A , K >. ) ) ) |
69 |
26 68
|
eqtrid |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) = ( ( ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) ( 2nd ` H ) ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) ) ` ( ( <. F , X >. ( 2nd ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) <. G , P >. ) ` <. A , K >. ) ) ) |
70 |
31 30 58 50 52 56
|
prf1 |
|- ( ph -> ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) = <. ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. F , X >. ) , ( ( 1st ` ( Q 1stF O ) ) ` <. F , X >. ) >. ) |
71 |
30 41 49 56
|
cofu1 |
|- ( ph -> ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. F , X >. ) = ( ( 1st ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ` ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ) ) |
72 |
|
fvex |
|- ( 1st ` Y ) e. _V |
73 |
|
fvex |
|- ( 2nd ` Y ) e. _V |
74 |
73
|
tposex |
|- tpos ( 2nd ` Y ) e. _V |
75 |
72 74
|
op1st |
|- ( 1st ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) = ( 1st ` Y ) |
76 |
75
|
a1i |
|- ( ph -> ( 1st ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) = ( 1st ` Y ) ) |
77 |
27 30 58 39 34 40 56
|
2ndf1 |
|- ( ph -> ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) = ( 2nd ` <. F , X >. ) ) |
78 |
|
op2ndg |
|- ( ( F e. ( O Func S ) /\ X e. B ) -> ( 2nd ` <. F , X >. ) = X ) |
79 |
16 17 78
|
syl2anc |
|- ( ph -> ( 2nd ` <. F , X >. ) = X ) |
80 |
77 79
|
eqtrd |
|- ( ph -> ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) = X ) |
81 |
76 80
|
fveq12d |
|- ( ph -> ( ( 1st ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ` ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ) = ( ( 1st ` Y ) ` X ) ) |
82 |
71 81
|
eqtrd |
|- ( ph -> ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. F , X >. ) = ( ( 1st ` Y ) ` X ) ) |
83 |
27 30 58 39 34 51 56
|
1stf1 |
|- ( ph -> ( ( 1st ` ( Q 1stF O ) ) ` <. F , X >. ) = ( 1st ` <. F , X >. ) ) |
84 |
|
op1stg |
|- ( ( F e. ( O Func S ) /\ X e. B ) -> ( 1st ` <. F , X >. ) = F ) |
85 |
16 17 84
|
syl2anc |
|- ( ph -> ( 1st ` <. F , X >. ) = F ) |
86 |
83 85
|
eqtrd |
|- ( ph -> ( ( 1st ` ( Q 1stF O ) ) ` <. F , X >. ) = F ) |
87 |
82 86
|
opeq12d |
|- ( ph -> <. ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. F , X >. ) , ( ( 1st ` ( Q 1stF O ) ) ` <. F , X >. ) >. = <. ( ( 1st ` Y ) ` X ) , F >. ) |
88 |
70 87
|
eqtrd |
|- ( ph -> ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) = <. ( ( 1st ` Y ) ` X ) , F >. ) |
89 |
31 30 58 50 52 57
|
prf1 |
|- ( ph -> ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) = <. ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. G , P >. ) , ( ( 1st ` ( Q 1stF O ) ) ` <. G , P >. ) >. ) |
90 |
30 41 49 57
|
cofu1 |
|- ( ph -> ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. G , P >. ) = ( ( 1st ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ` ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) ) |
91 |
27 30 58 39 34 40 57
|
2ndf1 |
|- ( ph -> ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) = ( 2nd ` <. G , P >. ) ) |
92 |
|
op2ndg |
|- ( ( G e. ( O Func S ) /\ P e. B ) -> ( 2nd ` <. G , P >. ) = P ) |
93 |
18 19 92
|
syl2anc |
|- ( ph -> ( 2nd ` <. G , P >. ) = P ) |
94 |
91 93
|
eqtrd |
|- ( ph -> ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) = P ) |
95 |
76 94
|
fveq12d |
|- ( ph -> ( ( 1st ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ` ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) = ( ( 1st ` Y ) ` P ) ) |
96 |
90 95
|
eqtrd |
|- ( ph -> ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. G , P >. ) = ( ( 1st ` Y ) ` P ) ) |
97 |
27 30 58 39 34 51 57
|
1stf1 |
|- ( ph -> ( ( 1st ` ( Q 1stF O ) ) ` <. G , P >. ) = ( 1st ` <. G , P >. ) ) |
98 |
|
op1stg |
|- ( ( G e. ( O Func S ) /\ P e. B ) -> ( 1st ` <. G , P >. ) = G ) |
99 |
18 19 98
|
syl2anc |
|- ( ph -> ( 1st ` <. G , P >. ) = G ) |
100 |
97 99
|
eqtrd |
|- ( ph -> ( ( 1st ` ( Q 1stF O ) ) ` <. G , P >. ) = G ) |
101 |
96 100
|
opeq12d |
|- ( ph -> <. ( ( 1st ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) ` <. G , P >. ) , ( ( 1st ` ( Q 1stF O ) ) ` <. G , P >. ) >. = <. ( ( 1st ` Y ) ` P ) , G >. ) |
102 |
89 101
|
eqtrd |
|- ( ph -> ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) = <. ( ( 1st ` Y ) ` P ) , G >. ) |
103 |
88 102
|
oveq12d |
|- ( ph -> ( ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) ( 2nd ` H ) ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) ) = ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) ) |
104 |
31 30 58 50 52 56 57 67
|
prf2 |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) <. G , P >. ) ` <. A , K >. ) = <. ( ( <. F , X >. ( 2nd ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) <. G , P >. ) ` <. A , K >. ) , ( ( <. F , X >. ( 2nd ` ( Q 1stF O ) ) <. G , P >. ) ` <. A , K >. ) >. ) |
105 |
30 41 49 56 57 58 67
|
cofu2 |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) <. G , P >. ) ` <. A , K >. ) = ( ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ( 2nd ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) ` ( ( <. F , X >. ( 2nd ` ( Q 2ndF O ) ) <. G , P >. ) ` <. A , K >. ) ) ) |
106 |
72 74
|
op2nd |
|- ( 2nd ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) = tpos ( 2nd ` Y ) |
107 |
106
|
oveqi |
|- ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ( 2nd ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) = ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) tpos ( 2nd ` Y ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) |
108 |
|
ovtpos |
|- ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) tpos ( 2nd ` Y ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) = ( ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ( 2nd ` Y ) ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ) |
109 |
107 108
|
eqtri |
|- ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ( 2nd ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) = ( ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ( 2nd ` Y ) ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ) |
110 |
94 80
|
oveq12d |
|- ( ph -> ( ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ( 2nd ` Y ) ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ) = ( P ( 2nd ` Y ) X ) ) |
111 |
109 110
|
eqtrid |
|- ( ph -> ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ( 2nd ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) = ( P ( 2nd ` Y ) X ) ) |
112 |
27 30 58 39 34 40 56 57
|
2ndf2 |
|- ( ph -> ( <. F , X >. ( 2nd ` ( Q 2ndF O ) ) <. G , P >. ) = ( 2nd |` ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) ) |
113 |
112
|
fveq1d |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( Q 2ndF O ) ) <. G , P >. ) ` <. A , K >. ) = ( ( 2nd |` ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) ` <. A , K >. ) ) |
114 |
67
|
fvresd |
|- ( ph -> ( ( 2nd |` ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) ` <. A , K >. ) = ( 2nd ` <. A , K >. ) ) |
115 |
|
op2ndg |
|- ( ( A e. ( F ( O Nat S ) G ) /\ K e. ( P ( Hom ` C ) X ) ) -> ( 2nd ` <. A , K >. ) = K ) |
116 |
20 21 115
|
syl2anc |
|- ( ph -> ( 2nd ` <. A , K >. ) = K ) |
117 |
113 114 116
|
3eqtrd |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( Q 2ndF O ) ) <. G , P >. ) ` <. A , K >. ) = K ) |
118 |
111 117
|
fveq12d |
|- ( ph -> ( ( ( ( 1st ` ( Q 2ndF O ) ) ` <. F , X >. ) ( 2nd ` <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. ) ( ( 1st ` ( Q 2ndF O ) ) ` <. G , P >. ) ) ` ( ( <. F , X >. ( 2nd ` ( Q 2ndF O ) ) <. G , P >. ) ` <. A , K >. ) ) = ( ( P ( 2nd ` Y ) X ) ` K ) ) |
119 |
105 118
|
eqtrd |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) <. G , P >. ) ` <. A , K >. ) = ( ( P ( 2nd ` Y ) X ) ` K ) ) |
120 |
27 30 58 39 34 51 56 57
|
1stf2 |
|- ( ph -> ( <. F , X >. ( 2nd ` ( Q 1stF O ) ) <. G , P >. ) = ( 1st |` ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) ) |
121 |
120
|
fveq1d |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( Q 1stF O ) ) <. G , P >. ) ` <. A , K >. ) = ( ( 1st |` ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) ` <. A , K >. ) ) |
122 |
67
|
fvresd |
|- ( ph -> ( ( 1st |` ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) ) ` <. A , K >. ) = ( 1st ` <. A , K >. ) ) |
123 |
|
op1stg |
|- ( ( A e. ( F ( O Nat S ) G ) /\ K e. ( P ( Hom ` C ) X ) ) -> ( 1st ` <. A , K >. ) = A ) |
124 |
20 21 123
|
syl2anc |
|- ( ph -> ( 1st ` <. A , K >. ) = A ) |
125 |
121 122 124
|
3eqtrd |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( Q 1stF O ) ) <. G , P >. ) ` <. A , K >. ) = A ) |
126 |
119 125
|
opeq12d |
|- ( ph -> <. ( ( <. F , X >. ( 2nd ` ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) ) <. G , P >. ) ` <. A , K >. ) , ( ( <. F , X >. ( 2nd ` ( Q 1stF O ) ) <. G , P >. ) ` <. A , K >. ) >. = <. ( ( P ( 2nd ` Y ) X ) ` K ) , A >. ) |
127 |
104 126
|
eqtrd |
|- ( ph -> ( ( <. F , X >. ( 2nd ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) <. G , P >. ) ` <. A , K >. ) = <. ( ( P ( 2nd ` Y ) X ) ` K ) , A >. ) |
128 |
103 127
|
fveq12d |
|- ( ph -> ( ( ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) ( 2nd ` H ) ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) ) ` ( ( <. F , X >. ( 2nd ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) <. G , P >. ) ` <. A , K >. ) ) = ( ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) ` <. ( ( P ( 2nd ` Y ) X ) ` K ) , A >. ) ) |
129 |
|
df-ov |
|- ( ( ( P ( 2nd ` Y ) X ) ` K ) ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) A ) = ( ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) ` <. ( ( P ( 2nd ` Y ) X ) ` K ) , A >. ) |
130 |
128 129
|
eqtr4di |
|- ( ph -> ( ( ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. F , X >. ) ( 2nd ` H ) ( ( 1st ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) ` <. G , P >. ) ) ` ( ( <. F , X >. ( 2nd ` ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) <. G , P >. ) ` <. A , K >. ) ) = ( ( ( P ( 2nd ` Y ) X ) ` K ) ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) A ) ) |
131 |
69 130
|
eqtrd |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) = ( ( ( P ( 2nd ` Y ) X ) ` K ) ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) A ) ) |