| Step |
Hyp |
Ref |
Expression |
| 1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
| 2 |
|
yoneda.b |
|- B = ( Base ` C ) |
| 3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
| 4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
| 5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
| 6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
| 7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
| 8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
| 9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
| 10 |
|
yoneda.e |
|- E = ( O evalF S ) |
| 11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
| 12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
| 13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
| 14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
| 15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
| 16 |
|
yonedalem21.f |
|- ( ph -> F e. ( O Func S ) ) |
| 17 |
|
yonedalem21.x |
|- ( ph -> X e. B ) |
| 18 |
|
yonedalem22.g |
|- ( ph -> G e. ( O Func S ) ) |
| 19 |
|
yonedalem22.p |
|- ( ph -> P e. B ) |
| 20 |
|
yonedalem22.a |
|- ( ph -> A e. ( F ( O Nat S ) G ) ) |
| 21 |
|
yonedalem22.k |
|- ( ph -> K e. ( P ( Hom ` C ) X ) ) |
| 22 |
|
yonedalem3.m |
|- M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) ) |
| 23 |
|
oveq2 |
|- ( b = a -> ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) = ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ) |
| 24 |
23
|
oveq1d |
|- ( b = a -> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) = ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) |
| 25 |
24
|
fveq1d |
|- ( b = a -> ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) = ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ) |
| 26 |
25
|
fveq1d |
|- ( b = a -> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) = ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) |
| 27 |
26
|
cbvmptv |
|- ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) |
| 28 |
|
eqid |
|- ( O Nat S ) = ( O Nat S ) |
| 29 |
4 2
|
oppcbas |
|- B = ( Base ` O ) |
| 30 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
| 31 |
|
eqid |
|- ( comp ` Q ) = ( comp ` Q ) |
| 32 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 33 |
7 28
|
fuchom |
|- ( O Nat S ) = ( Hom ` Q ) |
| 34 |
|
relfunc |
|- Rel ( C Func Q ) |
| 35 |
15
|
unssbd |
|- ( ph -> U C_ V ) |
| 36 |
13 35
|
ssexd |
|- ( ph -> U e. _V ) |
| 37 |
1 12 4 5 7 36 14
|
yoncl |
|- ( ph -> Y e. ( C Func Q ) ) |
| 38 |
|
1st2ndbr |
|- ( ( Rel ( C Func Q ) /\ Y e. ( C Func Q ) ) -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
| 39 |
34 37 38
|
sylancr |
|- ( ph -> ( 1st ` Y ) ( C Func Q ) ( 2nd ` Y ) ) |
| 40 |
2 32 33 39 19 17
|
funcf2 |
|- ( ph -> ( P ( 2nd ` Y ) X ) : ( P ( Hom ` C ) X ) --> ( ( ( 1st ` Y ) ` P ) ( O Nat S ) ( ( 1st ` Y ) ` X ) ) ) |
| 41 |
40 21
|
ffvelcdmd |
|- ( ph -> ( ( P ( 2nd ` Y ) X ) ` K ) e. ( ( ( 1st ` Y ) ` P ) ( O Nat S ) ( ( 1st ` Y ) ` X ) ) ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( P ( 2nd ` Y ) X ) ` K ) e. ( ( ( 1st ` Y ) ` P ) ( O Nat S ) ( ( 1st ` Y ) ` X ) ) ) |
| 43 |
|
simpr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) |
| 44 |
20
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> A e. ( F ( O Nat S ) G ) ) |
| 45 |
7 28 31 43 44
|
fuccocl |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) G ) ) |
| 46 |
19
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> P e. B ) |
| 47 |
7 28 29 30 31 42 45 46
|
fuccoval |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) = ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ` P ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ) |
| 48 |
7 28 29 30 31 43 44 46
|
fuccoval |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ` P ) = ( ( A ` P ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) , ( ( 1st ` F ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( a ` P ) ) ) |
| 49 |
36
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> U e. _V ) |
| 50 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 51 |
|
relfunc |
|- Rel ( O Func S ) |
| 52 |
7
|
fucbas |
|- ( O Func S ) = ( Base ` Q ) |
| 53 |
2 52 39
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : B --> ( O Func S ) ) |
| 54 |
53 17
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` Y ) ` X ) e. ( O Func S ) ) |
| 55 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` X ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` X ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` X ) ) ) |
| 56 |
51 54 55
|
sylancr |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` X ) ) ) |
| 57 |
29 50 56
|
funcf1 |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> ( Base ` S ) ) |
| 58 |
5 36
|
setcbas |
|- ( ph -> U = ( Base ` S ) ) |
| 59 |
58
|
feq3d |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> U <-> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> ( Base ` S ) ) ) |
| 60 |
57 59
|
mpbird |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` X ) ) : B --> U ) |
| 61 |
60 19
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) e. U ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) e. U ) |
| 63 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ F e. ( O Func S ) ) -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
| 64 |
51 16 63
|
sylancr |
|- ( ph -> ( 1st ` F ) ( O Func S ) ( 2nd ` F ) ) |
| 65 |
29 50 64
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` S ) ) |
| 66 |
58
|
feq3d |
|- ( ph -> ( ( 1st ` F ) : B --> U <-> ( 1st ` F ) : B --> ( Base ` S ) ) ) |
| 67 |
65 66
|
mpbird |
|- ( ph -> ( 1st ` F ) : B --> U ) |
| 68 |
67 19
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` F ) ` P ) e. U ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( 1st ` F ) ` P ) e. U ) |
| 70 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ G e. ( O Func S ) ) -> ( 1st ` G ) ( O Func S ) ( 2nd ` G ) ) |
| 71 |
51 18 70
|
sylancr |
|- ( ph -> ( 1st ` G ) ( O Func S ) ( 2nd ` G ) ) |
| 72 |
29 50 71
|
funcf1 |
|- ( ph -> ( 1st ` G ) : B --> ( Base ` S ) ) |
| 73 |
72 19
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` G ) ` P ) e. ( Base ` S ) ) |
| 74 |
73 58
|
eleqtrrd |
|- ( ph -> ( ( 1st ` G ) ` P ) e. U ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( 1st ` G ) ` P ) e. U ) |
| 76 |
28 43
|
nat1st2nd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> a e. ( <. ( 1st ` ( ( 1st ` Y ) ` X ) ) , ( 2nd ` ( ( 1st ` Y ) ` X ) ) >. ( O Nat S ) <. ( 1st ` F ) , ( 2nd ` F ) >. ) ) |
| 77 |
|
eqid |
|- ( Hom ` S ) = ( Hom ` S ) |
| 78 |
28 76 29 77 46
|
natcl |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( a ` P ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ( Hom ` S ) ( ( 1st ` F ) ` P ) ) ) |
| 79 |
5 49 77 62 69
|
elsetchom |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ( Hom ` S ) ( ( 1st ` F ) ` P ) ) <-> ( a ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) --> ( ( 1st ` F ) ` P ) ) ) |
| 80 |
78 79
|
mpbid |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( a ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) --> ( ( 1st ` F ) ` P ) ) |
| 81 |
28 20
|
nat1st2nd |
|- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( O Nat S ) <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 82 |
28 81 29 77 19
|
natcl |
|- ( ph -> ( A ` P ) e. ( ( ( 1st ` F ) ` P ) ( Hom ` S ) ( ( 1st ` G ) ` P ) ) ) |
| 83 |
5 36 77 68 74
|
elsetchom |
|- ( ph -> ( ( A ` P ) e. ( ( ( 1st ` F ) ` P ) ( Hom ` S ) ( ( 1st ` G ) ` P ) ) <-> ( A ` P ) : ( ( 1st ` F ) ` P ) --> ( ( 1st ` G ) ` P ) ) ) |
| 84 |
82 83
|
mpbid |
|- ( ph -> ( A ` P ) : ( ( 1st ` F ) ` P ) --> ( ( 1st ` G ) ` P ) ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( A ` P ) : ( ( 1st ` F ) ` P ) --> ( ( 1st ` G ) ` P ) ) |
| 86 |
5 49 30 62 69 75 80 85
|
setcco |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( A ` P ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) , ( ( 1st ` F ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( a ` P ) ) = ( ( A ` P ) o. ( a ` P ) ) ) |
| 87 |
48 86
|
eqtrd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ` P ) = ( ( A ` P ) o. ( a ` P ) ) ) |
| 88 |
87
|
oveq1d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ` P ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) = ( ( ( A ` P ) o. ( a ` P ) ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ) |
| 89 |
53 19
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` Y ) ` P ) e. ( O Func S ) ) |
| 90 |
|
1st2ndbr |
|- ( ( Rel ( O Func S ) /\ ( ( 1st ` Y ) ` P ) e. ( O Func S ) ) -> ( 1st ` ( ( 1st ` Y ) ` P ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` P ) ) ) |
| 91 |
51 89 90
|
sylancr |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` P ) ) ( O Func S ) ( 2nd ` ( ( 1st ` Y ) ` P ) ) ) |
| 92 |
29 50 91
|
funcf1 |
|- ( ph -> ( 1st ` ( ( 1st ` Y ) ` P ) ) : B --> ( Base ` S ) ) |
| 93 |
92 19
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) e. ( Base ` S ) ) |
| 94 |
93 58
|
eleqtrrd |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) e. U ) |
| 95 |
94
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) e. U ) |
| 96 |
28 41
|
nat1st2nd |
|- ( ph -> ( ( P ( 2nd ` Y ) X ) ` K ) e. ( <. ( 1st ` ( ( 1st ` Y ) ` P ) ) , ( 2nd ` ( ( 1st ` Y ) ` P ) ) >. ( O Nat S ) <. ( 1st ` ( ( 1st ` Y ) ` X ) ) , ( 2nd ` ( ( 1st ` Y ) ` X ) ) >. ) ) |
| 97 |
28 96 29 77 19
|
natcl |
|- ( ph -> ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) ) |
| 98 |
5 36 77 94 61
|
elsetchom |
|- ( ph -> ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) <-> ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) ) |
| 99 |
97 98
|
mpbid |
|- ( ph -> ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) |
| 101 |
|
fco |
|- ( ( ( A ` P ) : ( ( 1st ` F ) ` P ) --> ( ( 1st ` G ) ` P ) /\ ( a ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) --> ( ( 1st ` F ) ` P ) ) -> ( ( A ` P ) o. ( a ` P ) ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) --> ( ( 1st ` G ) ` P ) ) |
| 102 |
85 80 101
|
syl2anc |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( A ` P ) o. ( a ` P ) ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) --> ( ( 1st ` G ) ` P ) ) |
| 103 |
5 49 30 95 62 75 100 102
|
setcco |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( A ` P ) o. ( a ` P ) ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) = ( ( ( A ` P ) o. ( a ` P ) ) o. ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ) |
| 104 |
47 88 103
|
3eqtrd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) = ( ( ( A ` P ) o. ( a ` P ) ) o. ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ) |
| 105 |
104
|
fveq1d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) = ( ( ( ( A ` P ) o. ( a ` P ) ) o. ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ` ( .1. ` P ) ) ) |
| 106 |
2 32 3 12 19
|
catidcl |
|- ( ph -> ( .1. ` P ) e. ( P ( Hom ` C ) P ) ) |
| 107 |
1 2 12 19 32 19
|
yon11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) = ( P ( Hom ` C ) P ) ) |
| 108 |
106 107
|
eleqtrrd |
|- ( ph -> ( .1. ` P ) e. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( .1. ` P ) e. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) ) |
| 110 |
|
fvco3 |
|- ( ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) /\ ( .1. ` P ) e. ( ( 1st ` ( ( 1st ` Y ) ` P ) ) ` P ) ) -> ( ( ( ( A ` P ) o. ( a ` P ) ) o. ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ` ( .1. ` P ) ) = ( ( ( A ` P ) o. ( a ` P ) ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) ) |
| 111 |
100 109 110
|
syl2anc |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( A ` P ) o. ( a ` P ) ) o. ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ) ` ( .1. ` P ) ) = ( ( ( A ` P ) o. ( a ` P ) ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) ) |
| 112 |
100 109
|
ffvelcdmd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) |
| 113 |
|
fvco3 |
|- ( ( ( a ` P ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) --> ( ( 1st ` F ) ` P ) /\ ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) -> ( ( ( A ` P ) o. ( a ` P ) ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) = ( ( A ` P ) ` ( ( a ` P ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) ) ) |
| 114 |
80 112 113
|
syl2anc |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( A ` P ) o. ( a ` P ) ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) = ( ( A ` P ) ` ( ( a ` P ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) ) ) |
| 115 |
12
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> C e. Cat ) |
| 116 |
17
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> X e. B ) |
| 117 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 118 |
21
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> K e. ( P ( Hom ` C ) X ) ) |
| 119 |
106
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( .1. ` P ) e. ( P ( Hom ` C ) P ) ) |
| 120 |
1 2 115 46 32 116 117 46 118 119
|
yon2 |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) = ( K ( <. P , P >. ( comp ` C ) X ) ( .1. ` P ) ) ) |
| 121 |
2 32 3 115 46 117 116 118
|
catrid |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( K ( <. P , P >. ( comp ` C ) X ) ( .1. ` P ) ) = K ) |
| 122 |
120 121
|
eqtrd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) = K ) |
| 123 |
122
|
fveq2d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) = ( ( a ` P ) ` K ) ) |
| 124 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
| 125 |
29 124 77 56 17 19
|
funcf2 |
|- ( ph -> ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) : ( X ( Hom ` O ) P ) --> ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) ) |
| 126 |
32 4
|
oppchom |
|- ( X ( Hom ` O ) P ) = ( P ( Hom ` C ) X ) |
| 127 |
21 126
|
eleqtrrdi |
|- ( ph -> K e. ( X ( Hom ` O ) P ) ) |
| 128 |
125 127
|
ffvelcdmd |
|- ( ph -> ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) ) |
| 129 |
60 17
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) e. U ) |
| 130 |
5 36 77 129 61
|
elsetchom |
|- ( ph -> ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ( Hom ` S ) ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) <-> ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) ) |
| 131 |
128 130
|
mpbid |
|- ( ph -> ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) ) |
| 133 |
2 32 3 12 17
|
catidcl |
|- ( ph -> ( .1. ` X ) e. ( X ( Hom ` C ) X ) ) |
| 134 |
1 2 12 17 32 17
|
yon11 |
|- ( ph -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) = ( X ( Hom ` C ) X ) ) |
| 135 |
133 134
|
eleqtrrd |
|- ( ph -> ( .1. ` X ) e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ) |
| 136 |
135
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( .1. ` X ) e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ) |
| 137 |
|
fvco3 |
|- ( ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) /\ ( .1. ` X ) e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ) -> ( ( ( a ` P ) o. ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) ` ( .1. ` X ) ) = ( ( a ` P ) ` ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ` ( .1. ` X ) ) ) ) |
| 138 |
132 136 137
|
syl2anc |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( a ` P ) o. ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) ` ( .1. ` X ) ) = ( ( a ` P ) ` ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ` ( .1. ` X ) ) ) ) |
| 139 |
127
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> K e. ( X ( Hom ` O ) P ) ) |
| 140 |
28 76 29 124 30 116 46 139
|
nati |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) >. ( comp ` S ) ( ( 1st ` F ) ` P ) ) ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) = ( ( ( X ( 2nd ` F ) P ) ` K ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) , ( ( 1st ` F ) ` X ) >. ( comp ` S ) ( ( 1st ` F ) ` P ) ) ( a ` X ) ) ) |
| 141 |
129
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) e. U ) |
| 142 |
5 49 30 141 62 69 132 80
|
setcco |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) , ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` P ) >. ( comp ` S ) ( ( 1st ` F ) ` P ) ) ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) = ( ( a ` P ) o. ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) ) |
| 143 |
67 17
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` F ) ` X ) e. U ) |
| 144 |
143
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( 1st ` F ) ` X ) e. U ) |
| 145 |
28 76 29 77 116
|
natcl |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( a ` X ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` X ) ) ) |
| 146 |
5 49 77 141 144
|
elsetchom |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` X ) e. ( ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` X ) ) <-> ( a ` X ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` F ) ` X ) ) ) |
| 147 |
145 146
|
mpbid |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( a ` X ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` F ) ` X ) ) |
| 148 |
29 124 77 64 17 19
|
funcf2 |
|- ( ph -> ( X ( 2nd ` F ) P ) : ( X ( Hom ` O ) P ) --> ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` P ) ) ) |
| 149 |
148 127
|
ffvelcdmd |
|- ( ph -> ( ( X ( 2nd ` F ) P ) ` K ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` P ) ) ) |
| 150 |
5 36 77 143 68
|
elsetchom |
|- ( ph -> ( ( ( X ( 2nd ` F ) P ) ` K ) e. ( ( ( 1st ` F ) ` X ) ( Hom ` S ) ( ( 1st ` F ) ` P ) ) <-> ( ( X ( 2nd ` F ) P ) ` K ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` P ) ) ) |
| 151 |
149 150
|
mpbid |
|- ( ph -> ( ( X ( 2nd ` F ) P ) ` K ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` P ) ) |
| 152 |
151
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( X ( 2nd ` F ) P ) ` K ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` P ) ) |
| 153 |
5 49 30 141 144 69 147 152
|
setcco |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( X ( 2nd ` F ) P ) ` K ) ( <. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) , ( ( 1st ` F ) ` X ) >. ( comp ` S ) ( ( 1st ` F ) ` P ) ) ( a ` X ) ) = ( ( ( X ( 2nd ` F ) P ) ` K ) o. ( a ` X ) ) ) |
| 154 |
140 142 153
|
3eqtr3d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) o. ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) = ( ( ( X ( 2nd ` F ) P ) ` K ) o. ( a ` X ) ) ) |
| 155 |
154
|
fveq1d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( a ` P ) o. ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ) ` ( .1. ` X ) ) = ( ( ( ( X ( 2nd ` F ) P ) ` K ) o. ( a ` X ) ) ` ( .1. ` X ) ) ) |
| 156 |
133
|
adantr |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( .1. ` X ) e. ( X ( Hom ` C ) X ) ) |
| 157 |
1 2 115 116 32 116 117 46 118 156
|
yon12 |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ` ( .1. ` X ) ) = ( ( .1. ` X ) ( <. P , X >. ( comp ` C ) X ) K ) ) |
| 158 |
2 32 3 115 46 117 116 118
|
catlid |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( .1. ` X ) ( <. P , X >. ( comp ` C ) X ) K ) = K ) |
| 159 |
157 158
|
eqtrd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ` ( .1. ` X ) ) = K ) |
| 160 |
159
|
fveq2d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) ` ( ( ( X ( 2nd ` ( ( 1st ` Y ) ` X ) ) P ) ` K ) ` ( .1. ` X ) ) ) = ( ( a ` P ) ` K ) ) |
| 161 |
138 155 160
|
3eqtr3d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( X ( 2nd ` F ) P ) ` K ) o. ( a ` X ) ) ` ( .1. ` X ) ) = ( ( a ` P ) ` K ) ) |
| 162 |
|
fvco3 |
|- ( ( ( a ` X ) : ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) --> ( ( 1st ` F ) ` X ) /\ ( .1. ` X ) e. ( ( 1st ` ( ( 1st ` Y ) ` X ) ) ` X ) ) -> ( ( ( ( X ( 2nd ` F ) P ) ` K ) o. ( a ` X ) ) ` ( .1. ` X ) ) = ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) |
| 163 |
147 136 162
|
syl2anc |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( X ( 2nd ` F ) P ) ` K ) o. ( a ` X ) ) ` ( .1. ` X ) ) = ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) |
| 164 |
123 161 163
|
3eqtr2d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( a ` P ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) = ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) |
| 165 |
164
|
fveq2d |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( A ` P ) ` ( ( a ` P ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) ) = ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) |
| 166 |
114 165
|
eqtrd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( A ` P ) o. ( a ` P ) ) ` ( ( ( ( P ( 2nd ` Y ) X ) ` K ) ` P ) ` ( .1. ` P ) ) ) = ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) |
| 167 |
105 111 166
|
3eqtrd |
|- ( ( ph /\ a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) -> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) = ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) |
| 168 |
167
|
mpteq2dva |
|- ( ph -> ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) a ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) ) |
| 169 |
27 168
|
eqtrid |
|- ( ph -> ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) ) |
| 170 |
|
eqid |
|- ( Q Xc. O ) = ( Q Xc. O ) |
| 171 |
170 52 29
|
xpcbas |
|- ( ( O Func S ) X. B ) = ( Base ` ( Q Xc. O ) ) |
| 172 |
|
eqid |
|- ( Hom ` ( Q Xc. O ) ) = ( Hom ` ( Q Xc. O ) ) |
| 173 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
| 174 |
|
relfunc |
|- Rel ( ( Q Xc. O ) Func T ) |
| 175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
yonedalem1 |
|- ( ph -> ( Z e. ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) ) |
| 176 |
175
|
simpld |
|- ( ph -> Z e. ( ( Q Xc. O ) Func T ) ) |
| 177 |
|
1st2ndbr |
|- ( ( Rel ( ( Q Xc. O ) Func T ) /\ Z e. ( ( Q Xc. O ) Func T ) ) -> ( 1st ` Z ) ( ( Q Xc. O ) Func T ) ( 2nd ` Z ) ) |
| 178 |
174 176 177
|
sylancr |
|- ( ph -> ( 1st ` Z ) ( ( Q Xc. O ) Func T ) ( 2nd ` Z ) ) |
| 179 |
16 17
|
opelxpd |
|- ( ph -> <. F , X >. e. ( ( O Func S ) X. B ) ) |
| 180 |
18 19
|
opelxpd |
|- ( ph -> <. G , P >. e. ( ( O Func S ) X. B ) ) |
| 181 |
171 172 173 178 179 180
|
funcf2 |
|- ( ph -> ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) : ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) --> ( ( ( 1st ` Z ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` Z ) ` <. G , P >. ) ) ) |
| 182 |
170 52 29 33 124 16 17 18 19 172
|
xpchom2 |
|- ( ph -> ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) = ( ( F ( O Nat S ) G ) X. ( X ( Hom ` O ) P ) ) ) |
| 183 |
126
|
xpeq2i |
|- ( ( F ( O Nat S ) G ) X. ( X ( Hom ` O ) P ) ) = ( ( F ( O Nat S ) G ) X. ( P ( Hom ` C ) X ) ) |
| 184 |
182 183
|
eqtrdi |
|- ( ph -> ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) = ( ( F ( O Nat S ) G ) X. ( P ( Hom ` C ) X ) ) ) |
| 185 |
|
df-ov |
|- ( F ( 1st ` Z ) X ) = ( ( 1st ` Z ) ` <. F , X >. ) |
| 186 |
|
df-ov |
|- ( G ( 1st ` Z ) P ) = ( ( 1st ` Z ) ` <. G , P >. ) |
| 187 |
185 186
|
oveq12i |
|- ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) = ( ( ( 1st ` Z ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` Z ) ` <. G , P >. ) ) |
| 188 |
187
|
eqcomi |
|- ( ( ( 1st ` Z ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` Z ) ` <. G , P >. ) ) = ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) |
| 189 |
188
|
a1i |
|- ( ph -> ( ( ( 1st ` Z ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` Z ) ` <. G , P >. ) ) = ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) ) |
| 190 |
184 189
|
feq23d |
|- ( ph -> ( ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) : ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) --> ( ( ( 1st ` Z ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` Z ) ` <. G , P >. ) ) <-> ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) : ( ( F ( O Nat S ) G ) X. ( P ( Hom ` C ) X ) ) --> ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) ) ) |
| 191 |
181 190
|
mpbid |
|- ( ph -> ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) : ( ( F ( O Nat S ) G ) X. ( P ( Hom ` C ) X ) ) --> ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) ) |
| 192 |
191 20 21
|
fovcdmd |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) e. ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) ) |
| 193 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 194 |
171 193 178
|
funcf1 |
|- ( ph -> ( 1st ` Z ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) |
| 195 |
194 16 17
|
fovcdmd |
|- ( ph -> ( F ( 1st ` Z ) X ) e. ( Base ` T ) ) |
| 196 |
6 13
|
setcbas |
|- ( ph -> V = ( Base ` T ) ) |
| 197 |
195 196
|
eleqtrrd |
|- ( ph -> ( F ( 1st ` Z ) X ) e. V ) |
| 198 |
194 18 19
|
fovcdmd |
|- ( ph -> ( G ( 1st ` Z ) P ) e. ( Base ` T ) ) |
| 199 |
198 196
|
eleqtrrd |
|- ( ph -> ( G ( 1st ` Z ) P ) e. V ) |
| 200 |
6 13 173 197 199
|
elsetchom |
|- ( ph -> ( ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) e. ( ( F ( 1st ` Z ) X ) ( Hom ` T ) ( G ( 1st ` Z ) P ) ) <-> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) : ( F ( 1st ` Z ) X ) --> ( G ( 1st ` Z ) P ) ) ) |
| 201 |
192 200
|
mpbid |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) : ( F ( 1st ` Z ) X ) --> ( G ( 1st ` Z ) P ) ) |
| 202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
yonedalem22 |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) = ( ( ( P ( 2nd ` Y ) X ) ` K ) ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) A ) ) |
| 203 |
4
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 204 |
12 203
|
syl |
|- ( ph -> O e. Cat ) |
| 205 |
5
|
setccat |
|- ( U e. _V -> S e. Cat ) |
| 206 |
36 205
|
syl |
|- ( ph -> S e. Cat ) |
| 207 |
7 204 206
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 208 |
8 207 52 33 54 16 89 18 31 41 20
|
hof2val |
|- ( ph -> ( ( ( P ( 2nd ` Y ) X ) ` K ) ( <. ( ( 1st ` Y ) ` X ) , F >. ( 2nd ` H ) <. ( ( 1st ` Y ) ` P ) , G >. ) A ) = ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) ) |
| 209 |
202 208
|
eqtrd |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) = ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) ) |
| 210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
yonedalem21 |
|- ( ph -> ( F ( 1st ` Z ) X ) = ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ) |
| 211 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19
|
yonedalem21 |
|- ( ph -> ( G ( 1st ` Z ) P ) = ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) ) |
| 212 |
209 210 211
|
feq123d |
|- ( ph -> ( ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) : ( F ( 1st ` Z ) X ) --> ( G ( 1st ` Z ) P ) <-> ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) : ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) --> ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) ) ) |
| 213 |
201 212
|
mpbid |
|- ( ph -> ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) : ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) --> ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) ) |
| 214 |
|
eqid |
|- ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) = ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) |
| 215 |
214
|
fmpt |
|- ( A. b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) e. ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) <-> ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ) : ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) --> ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) ) |
| 216 |
213 215
|
sylibr |
|- ( ph -> A. b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) e. ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) ) |
| 217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22
|
yonedalem3a |
|- ( ph -> ( ( G M P ) = ( a e. ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) |-> ( ( a ` P ) ` ( .1. ` P ) ) ) /\ ( G M P ) : ( G ( 1st ` Z ) P ) --> ( G ( 1st ` E ) P ) ) ) |
| 218 |
217
|
simpld |
|- ( ph -> ( G M P ) = ( a e. ( ( ( 1st ` Y ) ` P ) ( O Nat S ) G ) |-> ( ( a ` P ) ` ( .1. ` P ) ) ) ) |
| 219 |
|
fveq1 |
|- ( a = ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) -> ( a ` P ) = ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ) |
| 220 |
219
|
fveq1d |
|- ( a = ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) -> ( ( a ` P ) ` ( .1. ` P ) ) = ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) |
| 221 |
216 209 218 220
|
fmptcof |
|- ( ph -> ( ( G M P ) o. ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) ) = ( b e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( ( ( A ( <. ( ( 1st ` Y ) ` X ) , F >. ( comp ` Q ) G ) b ) ( <. ( ( 1st ` Y ) ` P ) , ( ( 1st ` Y ) ` X ) >. ( comp ` Q ) G ) ( ( P ( 2nd ` Y ) X ) ` K ) ) ` P ) ` ( .1. ` P ) ) ) ) |
| 222 |
|
eqid |
|- ( <. F , X >. ( 2nd ` E ) <. G , P >. ) = ( <. F , X >. ( 2nd ` E ) <. G , P >. ) |
| 223 |
10 204 206 29 124 30 28 16 18 17 19 222 20 127
|
evlf2val |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) = ( ( A ` P ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( ( X ( 2nd ` F ) P ) ` K ) ) ) |
| 224 |
5 36 30 143 68 74 151 84
|
setcco |
|- ( ph -> ( ( A ` P ) ( <. ( ( 1st ` F ) ` X ) , ( ( 1st ` F ) ` P ) >. ( comp ` S ) ( ( 1st ` G ) ` P ) ) ( ( X ( 2nd ` F ) P ) ` K ) ) = ( ( A ` P ) o. ( ( X ( 2nd ` F ) P ) ` K ) ) ) |
| 225 |
223 224
|
eqtrd |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) = ( ( A ` P ) o. ( ( X ( 2nd ` F ) P ) ` K ) ) ) |
| 226 |
225
|
coeq1d |
|- ( ph -> ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) o. ( F M X ) ) = ( ( ( A ` P ) o. ( ( X ( 2nd ` F ) P ) ` K ) ) o. ( F M X ) ) ) |
| 227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22
|
yonedalem3a |
|- ( ph -> ( ( F M X ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) /\ ( F M X ) : ( F ( 1st ` Z ) X ) --> ( F ( 1st ` E ) X ) ) ) |
| 228 |
227
|
simprd |
|- ( ph -> ( F M X ) : ( F ( 1st ` Z ) X ) --> ( F ( 1st ` E ) X ) ) |
| 229 |
227
|
simpld |
|- ( ph -> ( F M X ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) ) |
| 230 |
10 204 206 29 16 17
|
evlf1 |
|- ( ph -> ( F ( 1st ` E ) X ) = ( ( 1st ` F ) ` X ) ) |
| 231 |
229 210 230
|
feq123d |
|- ( ph -> ( ( F M X ) : ( F ( 1st ` Z ) X ) --> ( F ( 1st ` E ) X ) <-> ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) : ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) --> ( ( 1st ` F ) ` X ) ) ) |
| 232 |
228 231
|
mpbid |
|- ( ph -> ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) : ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) --> ( ( 1st ` F ) ` X ) ) |
| 233 |
|
eqid |
|- ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) |
| 234 |
233
|
fmpt |
|- ( A. a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ( ( a ` X ) ` ( .1. ` X ) ) e. ( ( 1st ` F ) ` X ) <-> ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( a ` X ) ` ( .1. ` X ) ) ) : ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) --> ( ( 1st ` F ) ` X ) ) |
| 235 |
232 234
|
sylibr |
|- ( ph -> A. a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) ( ( a ` X ) ` ( .1. ` X ) ) e. ( ( 1st ` F ) ` X ) ) |
| 236 |
|
fcompt |
|- ( ( ( A ` P ) : ( ( 1st ` F ) ` P ) --> ( ( 1st ` G ) ` P ) /\ ( ( X ( 2nd ` F ) P ) ` K ) : ( ( 1st ` F ) ` X ) --> ( ( 1st ` F ) ` P ) ) -> ( ( A ` P ) o. ( ( X ( 2nd ` F ) P ) ` K ) ) = ( y e. ( ( 1st ` F ) ` X ) |-> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` y ) ) ) ) |
| 237 |
84 151 236
|
syl2anc |
|- ( ph -> ( ( A ` P ) o. ( ( X ( 2nd ` F ) P ) ` K ) ) = ( y e. ( ( 1st ` F ) ` X ) |-> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` y ) ) ) ) |
| 238 |
|
2fveq3 |
|- ( y = ( ( a ` X ) ` ( .1. ` X ) ) -> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` y ) ) = ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) |
| 239 |
235 229 237 238
|
fmptcof |
|- ( ph -> ( ( ( A ` P ) o. ( ( X ( 2nd ` F ) P ) ` K ) ) o. ( F M X ) ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) ) |
| 240 |
226 239
|
eqtrd |
|- ( ph -> ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) o. ( F M X ) ) = ( a e. ( ( ( 1st ` Y ) ` X ) ( O Nat S ) F ) |-> ( ( A ` P ) ` ( ( ( X ( 2nd ` F ) P ) ` K ) ` ( ( a ` X ) ` ( .1. ` X ) ) ) ) ) ) |
| 241 |
169 221 240
|
3eqtr4d |
|- ( ph -> ( ( G M P ) o. ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) ) = ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) o. ( F M X ) ) ) |
| 242 |
|
eqid |
|- ( comp ` T ) = ( comp ` T ) |
| 243 |
175
|
simprd |
|- ( ph -> E e. ( ( Q Xc. O ) Func T ) ) |
| 244 |
|
1st2ndbr |
|- ( ( Rel ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) -> ( 1st ` E ) ( ( Q Xc. O ) Func T ) ( 2nd ` E ) ) |
| 245 |
174 243 244
|
sylancr |
|- ( ph -> ( 1st ` E ) ( ( Q Xc. O ) Func T ) ( 2nd ` E ) ) |
| 246 |
171 193 245
|
funcf1 |
|- ( ph -> ( 1st ` E ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) |
| 247 |
246 18 19
|
fovcdmd |
|- ( ph -> ( G ( 1st ` E ) P ) e. ( Base ` T ) ) |
| 248 |
247 196
|
eleqtrrd |
|- ( ph -> ( G ( 1st ` E ) P ) e. V ) |
| 249 |
217
|
simprd |
|- ( ph -> ( G M P ) : ( G ( 1st ` Z ) P ) --> ( G ( 1st ` E ) P ) ) |
| 250 |
6 13 242 197 199 248 201 249
|
setcco |
|- ( ph -> ( ( G M P ) ( <. ( F ( 1st ` Z ) X ) , ( G ( 1st ` Z ) P ) >. ( comp ` T ) ( G ( 1st ` E ) P ) ) ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) ) = ( ( G M P ) o. ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) ) ) |
| 251 |
246 16 17
|
fovcdmd |
|- ( ph -> ( F ( 1st ` E ) X ) e. ( Base ` T ) ) |
| 252 |
251 196
|
eleqtrrd |
|- ( ph -> ( F ( 1st ` E ) X ) e. V ) |
| 253 |
171 172 173 245 179 180
|
funcf2 |
|- ( ph -> ( <. F , X >. ( 2nd ` E ) <. G , P >. ) : ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) --> ( ( ( 1st ` E ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` E ) ` <. G , P >. ) ) ) |
| 254 |
|
df-ov |
|- ( F ( 1st ` E ) X ) = ( ( 1st ` E ) ` <. F , X >. ) |
| 255 |
|
df-ov |
|- ( G ( 1st ` E ) P ) = ( ( 1st ` E ) ` <. G , P >. ) |
| 256 |
254 255
|
oveq12i |
|- ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) = ( ( ( 1st ` E ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` E ) ` <. G , P >. ) ) |
| 257 |
256
|
eqcomi |
|- ( ( ( 1st ` E ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` E ) ` <. G , P >. ) ) = ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) |
| 258 |
257
|
a1i |
|- ( ph -> ( ( ( 1st ` E ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` E ) ` <. G , P >. ) ) = ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) ) |
| 259 |
184 258
|
feq23d |
|- ( ph -> ( ( <. F , X >. ( 2nd ` E ) <. G , P >. ) : ( <. F , X >. ( Hom ` ( Q Xc. O ) ) <. G , P >. ) --> ( ( ( 1st ` E ) ` <. F , X >. ) ( Hom ` T ) ( ( 1st ` E ) ` <. G , P >. ) ) <-> ( <. F , X >. ( 2nd ` E ) <. G , P >. ) : ( ( F ( O Nat S ) G ) X. ( P ( Hom ` C ) X ) ) --> ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) ) ) |
| 260 |
253 259
|
mpbid |
|- ( ph -> ( <. F , X >. ( 2nd ` E ) <. G , P >. ) : ( ( F ( O Nat S ) G ) X. ( P ( Hom ` C ) X ) ) --> ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) ) |
| 261 |
260 20 21
|
fovcdmd |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) e. ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) ) |
| 262 |
6 13 173 252 248
|
elsetchom |
|- ( ph -> ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) e. ( ( F ( 1st ` E ) X ) ( Hom ` T ) ( G ( 1st ` E ) P ) ) <-> ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) : ( F ( 1st ` E ) X ) --> ( G ( 1st ` E ) P ) ) ) |
| 263 |
261 262
|
mpbid |
|- ( ph -> ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) : ( F ( 1st ` E ) X ) --> ( G ( 1st ` E ) P ) ) |
| 264 |
6 13 242 197 252 248 228 263
|
setcco |
|- ( ph -> ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) ( <. ( F ( 1st ` Z ) X ) , ( F ( 1st ` E ) X ) >. ( comp ` T ) ( G ( 1st ` E ) P ) ) ( F M X ) ) = ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) o. ( F M X ) ) ) |
| 265 |
241 250 264
|
3eqtr4d |
|- ( ph -> ( ( G M P ) ( <. ( F ( 1st ` Z ) X ) , ( G ( 1st ` Z ) P ) >. ( comp ` T ) ( G ( 1st ` E ) P ) ) ( A ( <. F , X >. ( 2nd ` Z ) <. G , P >. ) K ) ) = ( ( A ( <. F , X >. ( 2nd ` E ) <. G , P >. ) K ) ( <. ( F ( 1st ` Z ) X ) , ( F ( 1st ` E ) X ) >. ( comp ` T ) ( G ( 1st ` E ) P ) ) ( F M X ) ) ) |