Metamath Proof Explorer


Theorem yonedalem3b

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y 𝑌 = ( Yon ‘ 𝐶 )
yoneda.b 𝐵 = ( Base ‘ 𝐶 )
yoneda.1 1 = ( Id ‘ 𝐶 )
yoneda.o 𝑂 = ( oppCat ‘ 𝐶 )
yoneda.s 𝑆 = ( SetCat ‘ 𝑈 )
yoneda.t 𝑇 = ( SetCat ‘ 𝑉 )
yoneda.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
yoneda.h 𝐻 = ( HomF𝑄 )
yoneda.r 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 )
yoneda.e 𝐸 = ( 𝑂 evalF 𝑆 )
yoneda.z 𝑍 = ( 𝐻func ( ( ⟨ ( 1st𝑌 ) , tpos ( 2nd𝑌 ) ⟩ ∘func ( 𝑄 2ndF 𝑂 ) ) ⟨,⟩F ( 𝑄 1stF 𝑂 ) ) )
yoneda.c ( 𝜑𝐶 ∈ Cat )
yoneda.w ( 𝜑𝑉𝑊 )
yoneda.u ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
yoneda.v ( 𝜑 → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
yonedalem21.f ( 𝜑𝐹 ∈ ( 𝑂 Func 𝑆 ) )
yonedalem21.x ( 𝜑𝑋𝐵 )
yonedalem22.g ( 𝜑𝐺 ∈ ( 𝑂 Func 𝑆 ) )
yonedalem22.p ( 𝜑𝑃𝐵 )
yonedalem22.a ( 𝜑𝐴 ∈ ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) )
yonedalem22.k ( 𝜑𝐾 ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) )
yonedalem3.m 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎𝑥 ) ‘ ( 1𝑥 ) ) ) )
Assertion yonedalem3b ( 𝜑 → ( ( 𝐺 𝑀 𝑃 ) ( ⟨ ( 𝐹 ( 1st𝑍 ) 𝑋 ) , ( 𝐺 ( 1st𝑍 ) 𝑃 ) ⟩ ( comp ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ) = ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ( ⟨ ( 𝐹 ( 1st𝑍 ) 𝑋 ) , ( 𝐹 ( 1st𝐸 ) 𝑋 ) ⟩ ( comp ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ( 𝐹 𝑀 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 yoneda.y 𝑌 = ( Yon ‘ 𝐶 )
2 yoneda.b 𝐵 = ( Base ‘ 𝐶 )
3 yoneda.1 1 = ( Id ‘ 𝐶 )
4 yoneda.o 𝑂 = ( oppCat ‘ 𝐶 )
5 yoneda.s 𝑆 = ( SetCat ‘ 𝑈 )
6 yoneda.t 𝑇 = ( SetCat ‘ 𝑉 )
7 yoneda.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
8 yoneda.h 𝐻 = ( HomF𝑄 )
9 yoneda.r 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 )
10 yoneda.e 𝐸 = ( 𝑂 evalF 𝑆 )
11 yoneda.z 𝑍 = ( 𝐻func ( ( ⟨ ( 1st𝑌 ) , tpos ( 2nd𝑌 ) ⟩ ∘func ( 𝑄 2ndF 𝑂 ) ) ⟨,⟩F ( 𝑄 1stF 𝑂 ) ) )
12 yoneda.c ( 𝜑𝐶 ∈ Cat )
13 yoneda.w ( 𝜑𝑉𝑊 )
14 yoneda.u ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
15 yoneda.v ( 𝜑 → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
16 yonedalem21.f ( 𝜑𝐹 ∈ ( 𝑂 Func 𝑆 ) )
17 yonedalem21.x ( 𝜑𝑋𝐵 )
18 yonedalem22.g ( 𝜑𝐺 ∈ ( 𝑂 Func 𝑆 ) )
19 yonedalem22.p ( 𝜑𝑃𝐵 )
20 yonedalem22.a ( 𝜑𝐴 ∈ ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) )
21 yonedalem22.k ( 𝜑𝐾 ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) )
22 yonedalem3.m 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎𝑥 ) ‘ ( 1𝑥 ) ) ) )
23 oveq2 ( 𝑏 = 𝑎 → ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) = ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) )
24 23 oveq1d ( 𝑏 = 𝑎 → ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) = ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) )
25 24 fveq1d ( 𝑏 = 𝑎 → ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) = ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) )
26 25 fveq1d ( 𝑏 = 𝑎 → ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) = ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) )
27 26 cbvmptv ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) )
28 eqid ( 𝑂 Nat 𝑆 ) = ( 𝑂 Nat 𝑆 )
29 4 2 oppcbas 𝐵 = ( Base ‘ 𝑂 )
30 eqid ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 )
31 eqid ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 )
32 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
33 7 28 fuchom ( 𝑂 Nat 𝑆 ) = ( Hom ‘ 𝑄 )
34 relfunc Rel ( 𝐶 Func 𝑄 )
35 15 unssbd ( 𝜑𝑈𝑉 )
36 13 35 ssexd ( 𝜑𝑈 ∈ V )
37 1 12 4 5 7 36 14 yoncl ( 𝜑𝑌 ∈ ( 𝐶 Func 𝑄 ) )
38 1st2ndbr ( ( Rel ( 𝐶 Func 𝑄 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
39 34 37 38 sylancr ( 𝜑 → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
40 2 32 33 39 19 17 funcf2 ( 𝜑 → ( 𝑃 ( 2nd𝑌 ) 𝑋 ) : ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑋 ) ) )
41 40 21 ffvelrnd ( 𝜑 → ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑋 ) ) )
42 41 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑋 ) ) )
43 simpr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) )
44 20 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝐴 ∈ ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) )
45 7 28 31 43 44 fuccocl ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) )
46 19 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝑃𝐵 )
47 7 28 29 30 31 42 45 46 fuccoval ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) = ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ‘ 𝑃 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) )
48 7 28 29 30 31 43 44 46 fuccoval ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ‘ 𝑃 ) = ( ( 𝐴𝑃 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) , ( ( 1st𝐹 ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( 𝑎𝑃 ) ) )
49 36 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝑈 ∈ V )
50 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
51 relfunc Rel ( 𝑂 Func 𝑆 )
52 7 fucbas ( 𝑂 Func 𝑆 ) = ( Base ‘ 𝑄 )
53 2 52 39 funcf1 ( 𝜑 → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) )
54 53 17 ffvelrnd ( 𝜑 → ( ( 1st𝑌 ) ‘ 𝑋 ) ∈ ( 𝑂 Func 𝑆 ) )
55 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ( ( 1st𝑌 ) ‘ 𝑋 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) )
56 51 54 55 sylancr ( 𝜑 → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) )
57 29 50 56 funcf1 ( 𝜑 → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
58 5 36 setcbas ( 𝜑𝑈 = ( Base ‘ 𝑆 ) )
59 58 feq3d ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) : 𝐵𝑈 ↔ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) )
60 57 59 mpbird ( 𝜑 → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) : 𝐵𝑈 )
61 60 19 ffvelrnd ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ∈ 𝑈 )
62 61 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ∈ 𝑈 )
63 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ 𝐹 ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st𝐹 ) ( 𝑂 Func 𝑆 ) ( 2nd𝐹 ) )
64 51 16 63 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝑂 Func 𝑆 ) ( 2nd𝐹 ) )
65 29 50 64 funcf1 ( 𝜑 → ( 1st𝐹 ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
66 58 feq3d ( 𝜑 → ( ( 1st𝐹 ) : 𝐵𝑈 ↔ ( 1st𝐹 ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) )
67 65 66 mpbird ( 𝜑 → ( 1st𝐹 ) : 𝐵𝑈 )
68 67 19 ffvelrnd ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝑃 ) ∈ 𝑈 )
69 68 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1st𝐹 ) ‘ 𝑃 ) ∈ 𝑈 )
70 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ 𝐺 ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st𝐺 ) ( 𝑂 Func 𝑆 ) ( 2nd𝐺 ) )
71 51 18 70 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝑂 Func 𝑆 ) ( 2nd𝐺 ) )
72 29 50 71 funcf1 ( 𝜑 → ( 1st𝐺 ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
73 72 19 ffvelrnd ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑆 ) )
74 73 58 eleqtrrd ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑃 ) ∈ 𝑈 )
75 74 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1st𝐺 ) ‘ 𝑃 ) ∈ 𝑈 )
76 28 43 nat1st2nd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝑎 ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ) )
77 eqid ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 )
78 28 76 29 77 46 natcl ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝑎𝑃 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) )
79 5 49 77 62 69 elsetchom ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) ↔ ( 𝑎𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) ) )
80 78 79 mpbid ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝑎𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) )
81 28 20 nat1st2nd ( 𝜑𝐴 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
82 28 81 29 77 19 natcl ( 𝜑 → ( 𝐴𝑃 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑃 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) )
83 5 36 77 68 74 elsetchom ( 𝜑 → ( ( 𝐴𝑃 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑃 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ↔ ( 𝐴𝑃 ) : ( ( 1st𝐹 ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) ) )
84 82 83 mpbid ( 𝜑 → ( 𝐴𝑃 ) : ( ( 1st𝐹 ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) )
85 84 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝐴𝑃 ) : ( ( 1st𝐹 ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) )
86 5 49 30 62 69 75 80 85 setcco ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝐴𝑃 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) , ( ( 1st𝐹 ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( 𝑎𝑃 ) ) = ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) )
87 48 86 eqtrd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ‘ 𝑃 ) = ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) )
88 87 oveq1d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ‘ 𝑃 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) = ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) )
89 53 19 ffvelrnd ( 𝜑 → ( ( 1st𝑌 ) ‘ 𝑃 ) ∈ ( 𝑂 Func 𝑆 ) )
90 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ( ( 1st𝑌 ) ‘ 𝑃 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) )
91 51 89 90 sylancr ( 𝜑 → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) )
92 29 50 91 funcf1 ( 𝜑 → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
93 92 19 ffvelrnd ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ∈ ( Base ‘ 𝑆 ) )
94 93 58 eleqtrrd ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ∈ 𝑈 )
95 94 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ∈ 𝑈 )
96 28 41 nat1st2nd ( 𝜑 → ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ⟩ ) )
97 28 96 29 77 19 natcl ( 𝜑 → ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) )
98 5 36 77 94 61 elsetchom ( 𝜑 → ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) ↔ ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) )
99 97 98 mpbid ( 𝜑 → ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) )
100 99 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) )
101 fco ( ( ( 𝐴𝑃 ) : ( ( 1st𝐹 ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) ∧ ( 𝑎𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) ) → ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) )
102 85 80 101 syl2anc ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) )
103 5 49 30 95 62 75 100 102 setcco ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) = ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ∘ ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) )
104 47 88 103 3eqtrd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) = ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ∘ ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) )
105 104 fveq1d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) = ( ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ∘ ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) ‘ ( 1𝑃 ) ) )
106 2 32 3 12 19 catidcl ( 𝜑 → ( 1𝑃 ) ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑃 ) )
107 1 2 12 19 32 19 yon11 ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) = ( 𝑃 ( Hom ‘ 𝐶 ) 𝑃 ) )
108 106 107 eleqtrrd ( 𝜑 → ( 1𝑃 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) )
109 108 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 1𝑃 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) )
110 fvco3 ( ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ∧ ( 1𝑃 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑃 ) ) ‘ 𝑃 ) ) → ( ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ∘ ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) ‘ ( 1𝑃 ) ) = ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) )
111 100 109 110 syl2anc ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ∘ ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ) ‘ ( 1𝑃 ) ) = ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) )
112 100 109 ffvelrnd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) )
113 fvco3 ( ( ( 𝑎𝑃 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) ∧ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) → ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( ( 𝐴𝑃 ) ‘ ( ( 𝑎𝑃 ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) ) )
114 80 112 113 syl2anc ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( ( 𝐴𝑃 ) ‘ ( ( 𝑎𝑃 ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) ) )
115 12 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝐶 ∈ Cat )
116 17 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝑋𝐵 )
117 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
118 21 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝐾 ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) )
119 106 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 1𝑃 ) ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑃 ) )
120 1 2 115 46 32 116 117 46 118 119 yon2 ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) = ( 𝐾 ( ⟨ 𝑃 , 𝑃 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ( 1𝑃 ) ) )
121 2 32 3 115 46 117 116 118 catrid ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝐾 ( ⟨ 𝑃 , 𝑃 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) ( 1𝑃 ) ) = 𝐾 )
122 120 121 eqtrd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) = 𝐾 )
123 122 fveq2d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( ( 𝑎𝑃 ) ‘ 𝐾 ) )
124 eqid ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 )
125 29 124 77 56 17 19 funcf2 ( 𝜑 → ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) : ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ⟶ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) )
126 32 4 oppchom ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) = ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 )
127 21 126 eleqtrrdi ( 𝜑𝐾 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) )
128 125 127 ffvelrnd ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) )
129 60 17 ffvelrnd ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ∈ 𝑈 )
130 5 36 77 129 61 elsetchom ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) ↔ ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ) )
131 128 130 mpbid ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) )
132 131 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) )
133 2 32 3 12 17 catidcl ( 𝜑 → ( 1𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) )
134 1 2 12 17 32 17 yon11 ( 𝜑 → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) )
135 133 134 eleqtrrd ( 𝜑 → ( 1𝑋 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) )
136 135 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 1𝑋 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) )
137 fvco3 ( ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ∧ ( 1𝑋 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ) → ( ( ( 𝑎𝑃 ) ∘ ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) ‘ ( 1𝑋 ) ) = ( ( 𝑎𝑃 ) ‘ ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ‘ ( 1𝑋 ) ) ) )
138 132 136 137 syl2anc ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝑎𝑃 ) ∘ ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) ‘ ( 1𝑋 ) ) = ( ( 𝑎𝑃 ) ‘ ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ‘ ( 1𝑋 ) ) ) )
139 127 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → 𝐾 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) )
140 28 76 29 124 30 116 46 139 nati ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) = ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) ( 𝑎𝑋 ) ) )
141 129 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ∈ 𝑈 )
142 5 49 30 141 62 69 132 80 setcco ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) = ( ( 𝑎𝑃 ) ∘ ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) )
143 67 17 ffvelrnd ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝑋 ) ∈ 𝑈 )
144 143 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1st𝐹 ) ‘ 𝑋 ) ∈ 𝑈 )
145 28 76 29 77 116 natcl ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝑎𝑋 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑋 ) ) )
146 5 49 77 141 144 elsetchom ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑋 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑋 ) ) ↔ ( 𝑎𝑋 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑋 ) ) )
147 145 146 mpbid ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 𝑎𝑋 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑋 ) )
148 29 124 77 64 17 19 funcf2 ( 𝜑 → ( 𝑋 ( 2nd𝐹 ) 𝑃 ) : ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) )
149 148 127 ffvelrnd ( 𝜑 → ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) )
150 5 36 77 143 68 elsetchom ( 𝜑 → ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑋 ) ( Hom ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) ↔ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st𝐹 ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) ) )
151 149 150 mpbid ( 𝜑 → ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st𝐹 ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) )
152 151 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st𝐹 ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) )
153 5 49 30 141 144 69 147 152 setcco ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐹 ) ‘ 𝑃 ) ) ( 𝑎𝑋 ) ) = ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∘ ( 𝑎𝑋 ) ) )
154 140 142 153 3eqtr3d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ∘ ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) = ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∘ ( 𝑎𝑋 ) ) )
155 154 fveq1d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝑎𝑃 ) ∘ ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ) ‘ ( 1𝑋 ) ) = ( ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∘ ( 𝑎𝑋 ) ) ‘ ( 1𝑋 ) ) )
156 133 adantr ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( 1𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) )
157 1 2 115 116 32 116 117 46 118 156 yon12 ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ‘ ( 1𝑋 ) ) = ( ( 1𝑋 ) ( ⟨ 𝑃 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐾 ) )
158 2 32 3 115 46 117 116 118 catlid ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 1𝑋 ) ( ⟨ 𝑃 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐾 ) = 𝐾 )
159 157 158 eqtrd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ‘ ( 1𝑋 ) ) = 𝐾 )
160 159 fveq2d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ‘ ( ( ( 𝑋 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) 𝑃 ) ‘ 𝐾 ) ‘ ( 1𝑋 ) ) ) = ( ( 𝑎𝑃 ) ‘ 𝐾 ) )
161 138 155 160 3eqtr3d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∘ ( 𝑎𝑋 ) ) ‘ ( 1𝑋 ) ) = ( ( 𝑎𝑃 ) ‘ 𝐾 ) )
162 fvco3 ( ( ( 𝑎𝑋 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑋 ) ∧ ( 1𝑋 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑋 ) ) ‘ 𝑋 ) ) → ( ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∘ ( 𝑎𝑋 ) ) ‘ ( 1𝑋 ) ) = ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) )
163 147 136 162 syl2anc ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ∘ ( 𝑎𝑋 ) ) ‘ ( 1𝑋 ) ) = ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) )
164 123 161 163 3eqtr2d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝑎𝑃 ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) )
165 164 fveq2d ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( 𝐴𝑃 ) ‘ ( ( 𝑎𝑃 ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) ) = ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) )
166 114 165 eqtrd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( 𝐴𝑃 ) ∘ ( 𝑎𝑃 ) ) ‘ ( ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) )
167 105 111 166 3eqtrd ( ( 𝜑𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ) → ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) = ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) )
168 167 mpteq2dva ( 𝜑 → ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑎 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) ) )
169 27 168 eqtrid ( 𝜑 → ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) ) )
170 eqid ( 𝑄 ×c 𝑂 ) = ( 𝑄 ×c 𝑂 )
171 170 52 29 xpcbas ( ( 𝑂 Func 𝑆 ) × 𝐵 ) = ( Base ‘ ( 𝑄 ×c 𝑂 ) )
172 eqid ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) = ( Hom ‘ ( 𝑄 ×c 𝑂 ) )
173 eqid ( Hom ‘ 𝑇 ) = ( Hom ‘ 𝑇 )
174 relfunc Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 )
175 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 ( 𝜑 → ( 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) )
176 175 simpld ( 𝜑𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) )
177 1st2ndbr ( ( Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) → ( 1st𝑍 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝑍 ) )
178 174 176 177 sylancr ( 𝜑 → ( 1st𝑍 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝑍 ) )
179 16 17 opelxpd ( 𝜑 → ⟨ 𝐹 , 𝑋 ⟩ ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) )
180 18 19 opelxpd ( 𝜑 → ⟨ 𝐺 , 𝑃 ⟩ ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) )
181 171 172 173 178 179 180 funcf2 ( 𝜑 → ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ⟨ 𝐹 , 𝑋 ⟩ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) ⟨ 𝐺 , 𝑃 ⟩ ) ⟶ ( ( ( 1st𝑍 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) )
182 170 52 29 33 124 16 17 18 19 172 xpchom2 ( 𝜑 → ( ⟨ 𝐹 , 𝑋 ⟩ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) ⟨ 𝐺 , 𝑃 ⟩ ) = ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ) )
183 126 xpeq2i ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ) = ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) )
184 182 183 eqtrdi ( 𝜑 → ( ⟨ 𝐹 , 𝑋 ⟩ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) ⟨ 𝐺 , 𝑃 ⟩ ) = ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) )
185 df-ov ( 𝐹 ( 1st𝑍 ) 𝑋 ) = ( ( 1st𝑍 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ )
186 df-ov ( 𝐺 ( 1st𝑍 ) 𝑃 ) = ( ( 1st𝑍 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ )
187 185 186 oveq12i ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) = ( ( ( 1st𝑍 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) )
188 187 eqcomi ( ( ( 1st𝑍 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) = ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) )
189 188 a1i ( 𝜑 → ( ( ( 1st𝑍 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) = ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) )
190 184 189 feq23d ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ⟨ 𝐹 , 𝑋 ⟩ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) ⟨ 𝐺 , 𝑃 ⟩ ) ⟶ ( ( ( 1st𝑍 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) ↔ ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) ⟶ ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) ) )
191 181 190 mpbid ( 𝜑 → ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) ⟶ ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) )
192 191 20 21 fovrnd ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∈ ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) )
193 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
194 171 193 178 funcf1 ( 𝜑 → ( 1st𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) )
195 194 16 17 fovrnd ( 𝜑 → ( 𝐹 ( 1st𝑍 ) 𝑋 ) ∈ ( Base ‘ 𝑇 ) )
196 6 13 setcbas ( 𝜑𝑉 = ( Base ‘ 𝑇 ) )
197 195 196 eleqtrrd ( 𝜑 → ( 𝐹 ( 1st𝑍 ) 𝑋 ) ∈ 𝑉 )
198 194 18 19 fovrnd ( 𝜑 → ( 𝐺 ( 1st𝑍 ) 𝑃 ) ∈ ( Base ‘ 𝑇 ) )
199 198 196 eleqtrrd ( 𝜑 → ( 𝐺 ( 1st𝑍 ) 𝑃 ) ∈ 𝑉 )
200 6 13 173 197 199 elsetchom ( 𝜑 → ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∈ ( ( 𝐹 ( 1st𝑍 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) ↔ ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) : ( 𝐹 ( 1st𝑍 ) 𝑋 ) ⟶ ( 𝐺 ( 1st𝑍 ) 𝑃 ) ) )
201 192 200 mpbid ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) : ( 𝐹 ( 1st𝑍 ) 𝑋 ) ⟶ ( 𝐺 ( 1st𝑍 ) 𝑃 ) )
202 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 yonedalem22 ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) = ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( 2nd𝐻 ) ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , 𝐺 ⟩ ) 𝐴 ) )
203 4 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
204 12 203 syl ( 𝜑𝑂 ∈ Cat )
205 5 setccat ( 𝑈 ∈ V → 𝑆 ∈ Cat )
206 36 205 syl ( 𝜑𝑆 ∈ Cat )
207 7 204 206 fuccat ( 𝜑𝑄 ∈ Cat )
208 8 207 52 33 54 16 89 18 31 41 20 hof2val ( 𝜑 → ( ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( 2nd𝐻 ) ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , 𝐺 ⟩ ) 𝐴 ) = ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ) )
209 202 208 eqtrd ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) = ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ) )
210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 yonedalem21 ( 𝜑 → ( 𝐹 ( 1st𝑍 ) 𝑋 ) = ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) )
211 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 yonedalem21 ( 𝜑 → ( 𝐺 ( 1st𝑍 ) 𝑃 ) = ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) )
212 209 210 211 feq123d ( 𝜑 → ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) : ( 𝐹 ( 1st𝑍 ) 𝑋 ) ⟶ ( 𝐺 ( 1st𝑍 ) 𝑃 ) ↔ ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ) : ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) ) )
213 201 212 mpbid ( 𝜑 → ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ) : ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) )
214 eqid ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ) = ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) )
215 214 fmpt ( ∀ 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) ↔ ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ) : ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) )
216 213 215 sylibr ( 𝜑 → ∀ 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) )
217 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19 22 yonedalem3a ( 𝜑 → ( ( 𝐺 𝑀 𝑃 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) ↦ ( ( 𝑎𝑃 ) ‘ ( 1𝑃 ) ) ) ∧ ( 𝐺 𝑀 𝑃 ) : ( 𝐺 ( 1st𝑍 ) 𝑃 ) ⟶ ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) )
218 217 simpld ( 𝜑 → ( 𝐺 𝑀 𝑃 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑃 ) ( 𝑂 Nat 𝑆 ) 𝐺 ) ↦ ( ( 𝑎𝑃 ) ‘ ( 1𝑃 ) ) ) )
219 fveq1 ( 𝑎 = ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) → ( 𝑎𝑃 ) = ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) )
220 219 fveq1d ( 𝑎 = ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) → ( ( 𝑎𝑃 ) ‘ ( 1𝑃 ) ) = ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) )
221 216 209 218 220 fmptcof ( 𝜑 → ( ( 𝐺 𝑀 𝑃 ) ∘ ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ) = ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( ( ( 𝐴 ( ⟨ ( ( 1st𝑌 ) ‘ 𝑋 ) , 𝐹 ⟩ ( comp ‘ 𝑄 ) 𝐺 ) 𝑏 ) ( ⟨ ( ( 1st𝑌 ) ‘ 𝑃 ) , ( ( 1st𝑌 ) ‘ 𝑋 ) ⟩ ( comp ‘ 𝑄 ) 𝐺 ) ( ( 𝑃 ( 2nd𝑌 ) 𝑋 ) ‘ 𝐾 ) ) ‘ 𝑃 ) ‘ ( 1𝑃 ) ) ) )
222 eqid ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) = ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ )
223 10 204 206 29 124 30 28 16 18 17 19 222 20 127 evlf2val ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) = ( ( 𝐴𝑃 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) )
224 5 36 30 143 68 74 151 84 setcco ( 𝜑 → ( ( 𝐴𝑃 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑃 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st𝐺 ) ‘ 𝑃 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) = ( ( 𝐴𝑃 ) ∘ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) )
225 223 224 eqtrd ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) = ( ( 𝐴𝑃 ) ∘ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) )
226 225 coeq1d ( 𝜑 → ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∘ ( 𝐹 𝑀 𝑋 ) ) = ( ( ( 𝐴𝑃 ) ∘ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) ∘ ( 𝐹 𝑀 𝑋 ) ) )
227 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22 yonedalem3a ( 𝜑 → ( ( 𝐹 𝑀 𝑋 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ∧ ( 𝐹 𝑀 𝑋 ) : ( 𝐹 ( 1st𝑍 ) 𝑋 ) ⟶ ( 𝐹 ( 1st𝐸 ) 𝑋 ) ) )
228 227 simprd ( 𝜑 → ( 𝐹 𝑀 𝑋 ) : ( 𝐹 ( 1st𝑍 ) 𝑋 ) ⟶ ( 𝐹 ( 1st𝐸 ) 𝑋 ) )
229 227 simpld ( 𝜑 → ( 𝐹 𝑀 𝑋 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) )
230 10 204 206 29 16 17 evlf1 ( 𝜑 → ( 𝐹 ( 1st𝐸 ) 𝑋 ) = ( ( 1st𝐹 ) ‘ 𝑋 ) )
231 229 210 230 feq123d ( 𝜑 → ( ( 𝐹 𝑀 𝑋 ) : ( 𝐹 ( 1st𝑍 ) 𝑋 ) ⟶ ( 𝐹 ( 1st𝐸 ) 𝑋 ) ↔ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) : ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑋 ) ) )
232 228 231 mpbid ( 𝜑 → ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) : ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑋 ) )
233 eqid ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) )
234 233 fmpt ( ∀ 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ∈ ( ( 1st𝐹 ) ‘ 𝑋 ) ↔ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) : ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑋 ) )
235 232 234 sylibr ( 𝜑 → ∀ 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ∈ ( ( 1st𝐹 ) ‘ 𝑋 ) )
236 fcompt ( ( ( 𝐴𝑃 ) : ( ( 1st𝐹 ) ‘ 𝑃 ) ⟶ ( ( 1st𝐺 ) ‘ 𝑃 ) ∧ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) : ( ( 1st𝐹 ) ‘ 𝑋 ) ⟶ ( ( 1st𝐹 ) ‘ 𝑃 ) ) → ( ( 𝐴𝑃 ) ∘ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ ( ( 1st𝐹 ) ‘ 𝑋 ) ↦ ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ 𝑦 ) ) ) )
237 84 151 236 syl2anc ( 𝜑 → ( ( 𝐴𝑃 ) ∘ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ ( ( 1st𝐹 ) ‘ 𝑋 ) ↦ ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ 𝑦 ) ) ) )
238 2fveq3 ( 𝑦 = ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) → ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ 𝑦 ) ) = ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) )
239 235 229 237 238 fmptcof ( 𝜑 → ( ( ( 𝐴𝑃 ) ∘ ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ) ∘ ( 𝐹 𝑀 𝑋 ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) ) )
240 226 239 eqtrd ( 𝜑 → ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∘ ( 𝐹 𝑀 𝑋 ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑋 ) ( 𝑂 Nat 𝑆 ) 𝐹 ) ↦ ( ( 𝐴𝑃 ) ‘ ( ( ( 𝑋 ( 2nd𝐹 ) 𝑃 ) ‘ 𝐾 ) ‘ ( ( 𝑎𝑋 ) ‘ ( 1𝑋 ) ) ) ) ) )
241 169 221 240 3eqtr4d ( 𝜑 → ( ( 𝐺 𝑀 𝑃 ) ∘ ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ) = ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∘ ( 𝐹 𝑀 𝑋 ) ) )
242 eqid ( comp ‘ 𝑇 ) = ( comp ‘ 𝑇 )
243 175 simprd ( 𝜑𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) )
244 1st2ndbr ( ( Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) → ( 1st𝐸 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝐸 ) )
245 174 243 244 sylancr ( 𝜑 → ( 1st𝐸 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝐸 ) )
246 171 193 245 funcf1 ( 𝜑 → ( 1st𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) )
247 246 18 19 fovrnd ( 𝜑 → ( 𝐺 ( 1st𝐸 ) 𝑃 ) ∈ ( Base ‘ 𝑇 ) )
248 247 196 eleqtrrd ( 𝜑 → ( 𝐺 ( 1st𝐸 ) 𝑃 ) ∈ 𝑉 )
249 217 simprd ( 𝜑 → ( 𝐺 𝑀 𝑃 ) : ( 𝐺 ( 1st𝑍 ) 𝑃 ) ⟶ ( 𝐺 ( 1st𝐸 ) 𝑃 ) )
250 6 13 242 197 199 248 201 249 setcco ( 𝜑 → ( ( 𝐺 𝑀 𝑃 ) ( ⟨ ( 𝐹 ( 1st𝑍 ) 𝑋 ) , ( 𝐺 ( 1st𝑍 ) 𝑃 ) ⟩ ( comp ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ) = ( ( 𝐺 𝑀 𝑃 ) ∘ ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ) )
251 246 16 17 fovrnd ( 𝜑 → ( 𝐹 ( 1st𝐸 ) 𝑋 ) ∈ ( Base ‘ 𝑇 ) )
252 251 196 eleqtrrd ( 𝜑 → ( 𝐹 ( 1st𝐸 ) 𝑋 ) ∈ 𝑉 )
253 171 172 173 245 179 180 funcf2 ( 𝜑 → ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ⟨ 𝐹 , 𝑋 ⟩ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) ⟨ 𝐺 , 𝑃 ⟩ ) ⟶ ( ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) )
254 df-ov ( 𝐹 ( 1st𝐸 ) 𝑋 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ )
255 df-ov ( 𝐺 ( 1st𝐸 ) 𝑃 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ )
256 254 255 oveq12i ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) = ( ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) )
257 256 eqcomi ( ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) = ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) )
258 257 a1i ( 𝜑 → ( ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) = ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) )
259 184 258 feq23d ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ⟨ 𝐹 , 𝑋 ⟩ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) ⟨ 𝐺 , 𝑃 ⟩ ) ⟶ ( ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ( Hom ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑃 ⟩ ) ) ↔ ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) ⟶ ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ) )
260 253 259 mpbid ( 𝜑 → ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) : ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) ⟶ ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) )
261 260 20 21 fovrnd ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∈ ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) )
262 6 13 173 252 248 elsetchom ( 𝜑 → ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∈ ( ( 𝐹 ( 1st𝐸 ) 𝑋 ) ( Hom ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ↔ ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) : ( 𝐹 ( 1st𝐸 ) 𝑋 ) ⟶ ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) )
263 261 262 mpbid ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) : ( 𝐹 ( 1st𝐸 ) 𝑋 ) ⟶ ( 𝐺 ( 1st𝐸 ) 𝑃 ) )
264 6 13 242 197 252 248 228 263 setcco ( 𝜑 → ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ( ⟨ ( 𝐹 ( 1st𝑍 ) 𝑋 ) , ( 𝐹 ( 1st𝐸 ) 𝑋 ) ⟩ ( comp ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ( 𝐹 𝑀 𝑋 ) ) = ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ∘ ( 𝐹 𝑀 𝑋 ) ) )
265 241 250 264 3eqtr4d ( 𝜑 → ( ( 𝐺 𝑀 𝑃 ) ( ⟨ ( 𝐹 ( 1st𝑍 ) 𝑋 ) , ( 𝐺 ( 1st𝑍 ) 𝑃 ) ⟩ ( comp ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝑍 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ) = ( ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑃 ⟩ ) 𝐾 ) ( ⟨ ( 𝐹 ( 1st𝑍 ) 𝑋 ) , ( 𝐹 ( 1st𝐸 ) 𝑋 ) ⟩ ( comp ‘ 𝑇 ) ( 𝐺 ( 1st𝐸 ) 𝑃 ) ) ( 𝐹 𝑀 𝑋 ) ) )