Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yoneda.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
yoneda.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
4 |
|
yoneda.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
5 |
|
yoneda.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
6 |
|
yoneda.t |
⊢ 𝑇 = ( SetCat ‘ 𝑉 ) |
7 |
|
yoneda.q |
⊢ 𝑄 = ( 𝑂 FuncCat 𝑆 ) |
8 |
|
yoneda.h |
⊢ 𝐻 = ( HomF ‘ 𝑄 ) |
9 |
|
yoneda.r |
⊢ 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 ) |
10 |
|
yoneda.e |
⊢ 𝐸 = ( 𝑂 evalF 𝑆 ) |
11 |
|
yoneda.z |
⊢ 𝑍 = ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) |
12 |
|
yoneda.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
13 |
|
yoneda.w |
⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) |
14 |
|
yoneda.u |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
15 |
|
yoneda.v |
⊢ ( 𝜑 → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
16 |
|
yonedalem21.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑂 Func 𝑆 ) ) |
17 |
|
yonedalem21.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
18 |
|
yonedalem22.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑂 Func 𝑆 ) ) |
19 |
|
yonedalem22.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
20 |
|
yonedalem22.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) ) |
21 |
|
yonedalem22.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
22 |
11
|
fveq2i |
⊢ ( 2nd ‘ 𝑍 ) = ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) |
23 |
22
|
oveqi |
⊢ ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ 𝑍 ) 〈 𝐺 , 𝑃 〉 ) = ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) 〈 𝐺 , 𝑃 〉 ) |
24 |
23
|
oveqi |
⊢ ( 𝐴 ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ 𝑍 ) 〈 𝐺 , 𝑃 〉 ) 𝐾 ) = ( 𝐴 ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) 〈 𝐺 , 𝑃 〉 ) 𝐾 ) |
25 |
|
df-ov |
⊢ ( 𝐴 ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) 〈 𝐺 , 𝑃 〉 ) 𝐾 ) = ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) |
26 |
24 25
|
eqtri |
⊢ ( 𝐴 ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ 𝑍 ) 〈 𝐺 , 𝑃 〉 ) 𝐾 ) = ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) |
27 |
|
eqid |
⊢ ( 𝑄 ×c 𝑂 ) = ( 𝑄 ×c 𝑂 ) |
28 |
7
|
fucbas |
⊢ ( 𝑂 Func 𝑆 ) = ( Base ‘ 𝑄 ) |
29 |
4 2
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
30 |
27 28 29
|
xpcbas |
⊢ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) = ( Base ‘ ( 𝑄 ×c 𝑂 ) ) |
31 |
|
eqid |
⊢ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) = ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) |
32 |
|
eqid |
⊢ ( ( oppCat ‘ 𝑄 ) ×c 𝑄 ) = ( ( oppCat ‘ 𝑄 ) ×c 𝑄 ) |
33 |
4
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
34 |
12 33
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
35 |
15
|
unssbd |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
36 |
13 35
|
ssexd |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
37 |
5
|
setccat |
⊢ ( 𝑈 ∈ V → 𝑆 ∈ Cat ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
39 |
7 34 38
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
40 |
|
eqid |
⊢ ( 𝑄 2ndF 𝑂 ) = ( 𝑄 2ndF 𝑂 ) |
41 |
27 39 34 40
|
2ndfcl |
⊢ ( 𝜑 → ( 𝑄 2ndF 𝑂 ) ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑂 ) ) |
42 |
|
eqid |
⊢ ( oppCat ‘ 𝑄 ) = ( oppCat ‘ 𝑄 ) |
43 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝑄 ) |
44 |
1 12 4 5 7 36 14
|
yoncl |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) |
45 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝑄 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st ‘ 𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝑌 ) ) |
46 |
43 44 45
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝑌 ) ) |
47 |
4 42 46
|
funcoppc |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) ( 𝑂 Func ( oppCat ‘ 𝑄 ) ) tpos ( 2nd ‘ 𝑌 ) ) |
48 |
|
df-br |
⊢ ( ( 1st ‘ 𝑌 ) ( 𝑂 Func ( oppCat ‘ 𝑄 ) ) tpos ( 2nd ‘ 𝑌 ) ↔ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∈ ( 𝑂 Func ( oppCat ‘ 𝑄 ) ) ) |
49 |
47 48
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∈ ( 𝑂 Func ( oppCat ‘ 𝑄 ) ) ) |
50 |
41 49
|
cofucl |
⊢ ( 𝜑 → ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ∈ ( ( 𝑄 ×c 𝑂 ) Func ( oppCat ‘ 𝑄 ) ) ) |
51 |
|
eqid |
⊢ ( 𝑄 1stF 𝑂 ) = ( 𝑄 1stF 𝑂 ) |
52 |
27 39 34 51
|
1stfcl |
⊢ ( 𝜑 → ( 𝑄 1stF 𝑂 ) ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑄 ) ) |
53 |
31 32 50 52
|
prfcl |
⊢ ( 𝜑 → ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ∈ ( ( 𝑄 ×c 𝑂 ) Func ( ( oppCat ‘ 𝑄 ) ×c 𝑄 ) ) ) |
54 |
15
|
unssad |
⊢ ( 𝜑 → ran ( Homf ‘ 𝑄 ) ⊆ 𝑉 ) |
55 |
8 42 6 39 13 54
|
hofcl |
⊢ ( 𝜑 → 𝐻 ∈ ( ( ( oppCat ‘ 𝑄 ) ×c 𝑄 ) Func 𝑇 ) ) |
56 |
16 17
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐹 , 𝑋 〉 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ) |
57 |
18 19
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐺 , 𝑃 〉 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ) |
58 |
|
eqid |
⊢ ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) = ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) |
59 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
60 |
59 4
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) = ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) |
61 |
21 60
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ) |
62 |
20 61
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐾 〉 ∈ ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ) ) |
63 |
|
eqid |
⊢ ( 𝑂 Nat 𝑆 ) = ( 𝑂 Nat 𝑆 ) |
64 |
7 63
|
fuchom |
⊢ ( 𝑂 Nat 𝑆 ) = ( Hom ‘ 𝑄 ) |
65 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
66 |
27 28 29 64 65 16 17 18 19 58
|
xpchom2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) = ( ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) × ( 𝑋 ( Hom ‘ 𝑂 ) 𝑃 ) ) ) |
67 |
62 66
|
eleqtrrd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐾 〉 ∈ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) |
68 |
30 53 55 56 57 58 67
|
cofu2 |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( ( ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 𝐻 ) ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ‘ ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) ) ) |
69 |
26 68
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ 𝑍 ) 〈 𝐺 , 𝑃 〉 ) 𝐾 ) = ( ( ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 𝐻 ) ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ‘ ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) ) ) |
70 |
31 30 58 50 52 56
|
prf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = 〈 ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) , ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) 〉 ) |
71 |
30 41 49 56
|
cofu1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = ( ( 1st ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ‘ ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ) ) |
72 |
|
fvex |
⊢ ( 1st ‘ 𝑌 ) ∈ V |
73 |
|
fvex |
⊢ ( 2nd ‘ 𝑌 ) ∈ V |
74 |
73
|
tposex |
⊢ tpos ( 2nd ‘ 𝑌 ) ∈ V |
75 |
72 74
|
op1st |
⊢ ( 1st ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) = ( 1st ‘ 𝑌 ) |
76 |
75
|
a1i |
⊢ ( 𝜑 → ( 1st ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) = ( 1st ‘ 𝑌 ) ) |
77 |
27 30 58 39 34 40 56
|
2ndf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) ) |
78 |
|
op2ndg |
⊢ ( ( 𝐹 ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑋 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) = 𝑋 ) |
79 |
16 17 78
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) = 𝑋 ) |
80 |
77 79
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = 𝑋 ) |
81 |
76 80
|
fveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ‘ ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ) = ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) |
82 |
71 81
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) ) |
83 |
27 30 58 39 34 51 56
|
1stf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) ) |
84 |
|
op1stg |
⊢ ( ( 𝐹 ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑋 ∈ 𝐵 ) → ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) = 𝐹 ) |
85 |
16 17 84
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) = 𝐹 ) |
86 |
83 85
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = 𝐹 ) |
87 |
82 86
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) , ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) 〉 = 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ) |
88 |
70 87
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) = 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ) |
89 |
31 30 58 50 52 57
|
prf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = 〈 ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) , ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) 〉 ) |
90 |
30 41 49 57
|
cofu1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = ( ( 1st ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ‘ ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ) |
91 |
27 30 58 39 34 40 57
|
2ndf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = ( 2nd ‘ 〈 𝐺 , 𝑃 〉 ) ) |
92 |
|
op2ndg |
⊢ ( ( 𝐺 ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑃 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝐺 , 𝑃 〉 ) = 𝑃 ) |
93 |
18 19 92
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐺 , 𝑃 〉 ) = 𝑃 ) |
94 |
91 93
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = 𝑃 ) |
95 |
76 94
|
fveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ‘ ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) = ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) ) |
96 |
90 95
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) ) |
97 |
27 30 58 39 34 51 57
|
1stf1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = ( 1st ‘ 〈 𝐺 , 𝑃 〉 ) ) |
98 |
|
op1stg |
⊢ ( ( 𝐺 ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑃 ∈ 𝐵 ) → ( 1st ‘ 〈 𝐺 , 𝑃 〉 ) = 𝐺 ) |
99 |
18 19 98
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐺 , 𝑃 〉 ) = 𝐺 ) |
100 |
97 99
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = 𝐺 ) |
101 |
96 100
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) , ( ( 1st ‘ ( 𝑄 1stF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) 〉 = 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) |
102 |
89 101
|
eqtrd |
⊢ ( 𝜑 → ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) = 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) |
103 |
88 102
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 𝐻 ) ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) = ( 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ( 2nd ‘ 𝐻 ) 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) ) |
104 |
31 30 58 50 52 56 57 67
|
prf2 |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = 〈 ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) , ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 1stF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) 〉 ) |
105 |
30 41 49 56 57 58 67
|
cofu2 |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ‘ ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 2ndF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) ) ) |
106 |
72 74
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) = tpos ( 2nd ‘ 𝑌 ) |
107 |
106
|
oveqi |
⊢ ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) = ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) tpos ( 2nd ‘ 𝑌 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) |
108 |
|
ovtpos |
⊢ ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) tpos ( 2nd ‘ 𝑌 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) = ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ( 2nd ‘ 𝑌 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ) |
109 |
107 108
|
eqtri |
⊢ ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) = ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ( 2nd ‘ 𝑌 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ) |
110 |
94 80
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ( 2nd ‘ 𝑌 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ) = ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ) |
111 |
109 110
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) = ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ) |
112 |
27 30 58 39 34 40 56 57
|
2ndf2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 2ndF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) = ( 2nd ↾ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) ) |
113 |
112
|
fveq1d |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 2ndF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( ( 2nd ↾ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) ‘ 〈 𝐴 , 𝐾 〉 ) ) |
114 |
67
|
fvresd |
⊢ ( 𝜑 → ( ( 2nd ↾ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( 2nd ‘ 〈 𝐴 , 𝐾 〉 ) ) |
115 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐾 〉 ) = 𝐾 ) |
116 |
20 21 115
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐾 〉 ) = 𝐾 ) |
117 |
113 114 116
|
3eqtrd |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 2ndF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = 𝐾 ) |
118 |
111 117
|
fveq12d |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ) ( ( 1st ‘ ( 𝑄 2ndF 𝑂 ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ‘ ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 2ndF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) ) = ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) ) |
119 |
105 118
|
eqtrd |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) ) |
120 |
27 30 58 39 34 51 56 57
|
1stf2 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 1stF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) = ( 1st ↾ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) ) |
121 |
120
|
fveq1d |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 1stF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( ( 1st ↾ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) ‘ 〈 𝐴 , 𝐾 〉 ) ) |
122 |
67
|
fvresd |
⊢ ( 𝜑 → ( ( 1st ↾ ( 〈 𝐹 , 𝑋 〉 ( Hom ‘ ( 𝑄 ×c 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ) ‘ 〈 𝐴 , 𝐾 〉 ) = ( 1st ‘ 〈 𝐴 , 𝐾 〉 ) ) |
123 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ( 𝐹 ( 𝑂 Nat 𝑆 ) 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( 1st ‘ 〈 𝐴 , 𝐾 〉 ) = 𝐴 ) |
124 |
20 21 123
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , 𝐾 〉 ) = 𝐴 ) |
125 |
121 122 124
|
3eqtrd |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 1stF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = 𝐴 ) |
126 |
119 125
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) , ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( 𝑄 1stF 𝑂 ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) 〉 = 〈 ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) , 𝐴 〉 ) |
127 |
104 126
|
eqtrd |
⊢ ( 𝜑 → ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) = 〈 ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) , 𝐴 〉 ) |
128 |
103 127
|
fveq12d |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 𝐻 ) ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ‘ ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) ) = ( ( 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ( 2nd ‘ 𝐻 ) 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) ‘ 〈 ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) , 𝐴 〉 ) ) |
129 |
|
df-ov |
⊢ ( ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) ( 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ( 2nd ‘ 𝐻 ) 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) 𝐴 ) = ( ( 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ( 2nd ‘ 𝐻 ) 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) ‘ 〈 ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) , 𝐴 〉 ) |
130 |
128 129
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐹 , 𝑋 〉 ) ( 2nd ‘ 𝐻 ) ( ( 1st ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) ‘ 〈 𝐺 , 𝑃 〉 ) ) ‘ ( ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) 〈 𝐺 , 𝑃 〉 ) ‘ 〈 𝐴 , 𝐾 〉 ) ) = ( ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) ( 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ( 2nd ‘ 𝐻 ) 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) 𝐴 ) ) |
131 |
69 130
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 〈 𝐹 , 𝑋 〉 ( 2nd ‘ 𝑍 ) 〈 𝐺 , 𝑃 〉 ) 𝐾 ) = ( ( ( 𝑃 ( 2nd ‘ 𝑌 ) 𝑋 ) ‘ 𝐾 ) ( 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑋 ) , 𝐹 〉 ( 2nd ‘ 𝐻 ) 〈 ( ( 1st ‘ 𝑌 ) ‘ 𝑃 ) , 𝐺 〉 ) 𝐴 ) ) |