Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
|- Y = ( Yon ` C ) |
2 |
|
yoneda.b |
|- B = ( Base ` C ) |
3 |
|
yoneda.1 |
|- .1. = ( Id ` C ) |
4 |
|
yoneda.o |
|- O = ( oppCat ` C ) |
5 |
|
yoneda.s |
|- S = ( SetCat ` U ) |
6 |
|
yoneda.t |
|- T = ( SetCat ` V ) |
7 |
|
yoneda.q |
|- Q = ( O FuncCat S ) |
8 |
|
yoneda.h |
|- H = ( HomF ` Q ) |
9 |
|
yoneda.r |
|- R = ( ( Q Xc. O ) FuncCat T ) |
10 |
|
yoneda.e |
|- E = ( O evalF S ) |
11 |
|
yoneda.z |
|- Z = ( H o.func ( ( <. ( 1st ` Y ) , tpos ( 2nd ` Y ) >. o.func ( Q 2ndF O ) ) pairF ( Q 1stF O ) ) ) |
12 |
|
yoneda.c |
|- ( ph -> C e. Cat ) |
13 |
|
yoneda.w |
|- ( ph -> V e. W ) |
14 |
|
yoneda.u |
|- ( ph -> ran ( Homf ` C ) C_ U ) |
15 |
|
yoneda.v |
|- ( ph -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
16 |
|
yoneda.m |
|- M = ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) ) |
17 |
|
ovex |
|- ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) e. _V |
18 |
17
|
mptex |
|- ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) e. _V |
19 |
16 18
|
fnmpoi |
|- M Fn ( ( O Func S ) X. B ) |
20 |
19
|
a1i |
|- ( ph -> M Fn ( ( O Func S ) X. B ) ) |
21 |
12
|
adantr |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> C e. Cat ) |
22 |
13
|
adantr |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> V e. W ) |
23 |
14
|
adantr |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ran ( Homf ` C ) C_ U ) |
24 |
15
|
adantr |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
25 |
|
simprl |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> g e. ( O Func S ) ) |
26 |
|
simprr |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> y e. B ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 16
|
yonedalem3a |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( ( g M y ) = ( a e. ( ( ( 1st ` Y ) ` y ) ( O Nat S ) g ) |-> ( ( a ` y ) ` ( .1. ` y ) ) ) /\ ( g M y ) : ( g ( 1st ` Z ) y ) --> ( g ( 1st ` E ) y ) ) ) |
28 |
27
|
simprd |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( g M y ) : ( g ( 1st ` Z ) y ) --> ( g ( 1st ` E ) y ) ) |
29 |
|
eqid |
|- ( Hom ` T ) = ( Hom ` T ) |
30 |
|
eqid |
|- ( Q Xc. O ) = ( Q Xc. O ) |
31 |
7
|
fucbas |
|- ( O Func S ) = ( Base ` Q ) |
32 |
4 2
|
oppcbas |
|- B = ( Base ` O ) |
33 |
30 31 32
|
xpcbas |
|- ( ( O Func S ) X. B ) = ( Base ` ( Q Xc. O ) ) |
34 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
35 |
|
relfunc |
|- Rel ( ( Q Xc. O ) Func T ) |
36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
yonedalem1 |
|- ( ph -> ( Z e. ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) ) |
37 |
36
|
simpld |
|- ( ph -> Z e. ( ( Q Xc. O ) Func T ) ) |
38 |
|
1st2ndbr |
|- ( ( Rel ( ( Q Xc. O ) Func T ) /\ Z e. ( ( Q Xc. O ) Func T ) ) -> ( 1st ` Z ) ( ( Q Xc. O ) Func T ) ( 2nd ` Z ) ) |
39 |
35 37 38
|
sylancr |
|- ( ph -> ( 1st ` Z ) ( ( Q Xc. O ) Func T ) ( 2nd ` Z ) ) |
40 |
33 34 39
|
funcf1 |
|- ( ph -> ( 1st ` Z ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) |
41 |
40
|
fovrnda |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( g ( 1st ` Z ) y ) e. ( Base ` T ) ) |
42 |
6 22
|
setcbas |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> V = ( Base ` T ) ) |
43 |
41 42
|
eleqtrrd |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( g ( 1st ` Z ) y ) e. V ) |
44 |
36
|
simprd |
|- ( ph -> E e. ( ( Q Xc. O ) Func T ) ) |
45 |
|
1st2ndbr |
|- ( ( Rel ( ( Q Xc. O ) Func T ) /\ E e. ( ( Q Xc. O ) Func T ) ) -> ( 1st ` E ) ( ( Q Xc. O ) Func T ) ( 2nd ` E ) ) |
46 |
35 44 45
|
sylancr |
|- ( ph -> ( 1st ` E ) ( ( Q Xc. O ) Func T ) ( 2nd ` E ) ) |
47 |
33 34 46
|
funcf1 |
|- ( ph -> ( 1st ` E ) : ( ( O Func S ) X. B ) --> ( Base ` T ) ) |
48 |
47
|
fovrnda |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( g ( 1st ` E ) y ) e. ( Base ` T ) ) |
49 |
48 42
|
eleqtrrd |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( g ( 1st ` E ) y ) e. V ) |
50 |
6 22 29 43 49
|
elsetchom |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( ( g M y ) e. ( ( g ( 1st ` Z ) y ) ( Hom ` T ) ( g ( 1st ` E ) y ) ) <-> ( g M y ) : ( g ( 1st ` Z ) y ) --> ( g ( 1st ` E ) y ) ) ) |
51 |
28 50
|
mpbird |
|- ( ( ph /\ ( g e. ( O Func S ) /\ y e. B ) ) -> ( g M y ) e. ( ( g ( 1st ` Z ) y ) ( Hom ` T ) ( g ( 1st ` E ) y ) ) ) |
52 |
51
|
ralrimivva |
|- ( ph -> A. g e. ( O Func S ) A. y e. B ( g M y ) e. ( ( g ( 1st ` Z ) y ) ( Hom ` T ) ( g ( 1st ` E ) y ) ) ) |
53 |
|
fveq2 |
|- ( z = <. g , y >. -> ( M ` z ) = ( M ` <. g , y >. ) ) |
54 |
|
df-ov |
|- ( g M y ) = ( M ` <. g , y >. ) |
55 |
53 54
|
eqtr4di |
|- ( z = <. g , y >. -> ( M ` z ) = ( g M y ) ) |
56 |
|
fveq2 |
|- ( z = <. g , y >. -> ( ( 1st ` Z ) ` z ) = ( ( 1st ` Z ) ` <. g , y >. ) ) |
57 |
|
df-ov |
|- ( g ( 1st ` Z ) y ) = ( ( 1st ` Z ) ` <. g , y >. ) |
58 |
56 57
|
eqtr4di |
|- ( z = <. g , y >. -> ( ( 1st ` Z ) ` z ) = ( g ( 1st ` Z ) y ) ) |
59 |
|
fveq2 |
|- ( z = <. g , y >. -> ( ( 1st ` E ) ` z ) = ( ( 1st ` E ) ` <. g , y >. ) ) |
60 |
|
df-ov |
|- ( g ( 1st ` E ) y ) = ( ( 1st ` E ) ` <. g , y >. ) |
61 |
59 60
|
eqtr4di |
|- ( z = <. g , y >. -> ( ( 1st ` E ) ` z ) = ( g ( 1st ` E ) y ) ) |
62 |
58 61
|
oveq12d |
|- ( z = <. g , y >. -> ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) = ( ( g ( 1st ` Z ) y ) ( Hom ` T ) ( g ( 1st ` E ) y ) ) ) |
63 |
55 62
|
eleq12d |
|- ( z = <. g , y >. -> ( ( M ` z ) e. ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) <-> ( g M y ) e. ( ( g ( 1st ` Z ) y ) ( Hom ` T ) ( g ( 1st ` E ) y ) ) ) ) |
64 |
63
|
ralxp |
|- ( A. z e. ( ( O Func S ) X. B ) ( M ` z ) e. ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) <-> A. g e. ( O Func S ) A. y e. B ( g M y ) e. ( ( g ( 1st ` Z ) y ) ( Hom ` T ) ( g ( 1st ` E ) y ) ) ) |
65 |
52 64
|
sylibr |
|- ( ph -> A. z e. ( ( O Func S ) X. B ) ( M ` z ) e. ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) ) |
66 |
|
ovex |
|- ( O Func S ) e. _V |
67 |
2
|
fvexi |
|- B e. _V |
68 |
66 67
|
mpoex |
|- ( f e. ( O Func S ) , x e. B |-> ( a e. ( ( ( 1st ` Y ) ` x ) ( O Nat S ) f ) |-> ( ( a ` x ) ` ( .1. ` x ) ) ) ) e. _V |
69 |
16 68
|
eqeltri |
|- M e. _V |
70 |
69
|
elixp |
|- ( M e. X_ z e. ( ( O Func S ) X. B ) ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) <-> ( M Fn ( ( O Func S ) X. B ) /\ A. z e. ( ( O Func S ) X. B ) ( M ` z ) e. ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) ) ) |
71 |
20 65 70
|
sylanbrc |
|- ( ph -> M e. X_ z e. ( ( O Func S ) X. B ) ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) ) |
72 |
12
|
adantr |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> C e. Cat ) |
73 |
13
|
adantr |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> V e. W ) |
74 |
14
|
adantr |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ran ( Homf ` C ) C_ U ) |
75 |
15
|
adantr |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ran ( Homf ` Q ) u. U ) C_ V ) |
76 |
|
simpr1 |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> z e. ( ( O Func S ) X. B ) ) |
77 |
|
xp1st |
|- ( z e. ( ( O Func S ) X. B ) -> ( 1st ` z ) e. ( O Func S ) ) |
78 |
76 77
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( 1st ` z ) e. ( O Func S ) ) |
79 |
|
xp2nd |
|- ( z e. ( ( O Func S ) X. B ) -> ( 2nd ` z ) e. B ) |
80 |
76 79
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( 2nd ` z ) e. B ) |
81 |
|
simpr2 |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> w e. ( ( O Func S ) X. B ) ) |
82 |
|
xp1st |
|- ( w e. ( ( O Func S ) X. B ) -> ( 1st ` w ) e. ( O Func S ) ) |
83 |
81 82
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( 1st ` w ) e. ( O Func S ) ) |
84 |
|
xp2nd |
|- ( w e. ( ( O Func S ) X. B ) -> ( 2nd ` w ) e. B ) |
85 |
81 84
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( 2nd ` w ) e. B ) |
86 |
|
simpr3 |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) |
87 |
|
eqid |
|- ( O Nat S ) = ( O Nat S ) |
88 |
7 87
|
fuchom |
|- ( O Nat S ) = ( Hom ` Q ) |
89 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
90 |
|
eqid |
|- ( Hom ` ( Q Xc. O ) ) = ( Hom ` ( Q Xc. O ) ) |
91 |
30 33 88 89 90 76 81
|
xpchom |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( z ( Hom ` ( Q Xc. O ) ) w ) = ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` z ) ( Hom ` O ) ( 2nd ` w ) ) ) ) |
92 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
93 |
92 4
|
oppchom |
|- ( ( 2nd ` z ) ( Hom ` O ) ( 2nd ` w ) ) = ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) |
94 |
93
|
xpeq2i |
|- ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` z ) ( Hom ` O ) ( 2nd ` w ) ) ) = ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) |
95 |
91 94
|
eqtrdi |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( z ( Hom ` ( Q Xc. O ) ) w ) = ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
96 |
86 95
|
eleqtrd |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> g e. ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) ) |
97 |
|
xp1st |
|- ( g e. ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) -> ( 1st ` g ) e. ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) ) |
98 |
96 97
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( 1st ` g ) e. ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) ) |
99 |
|
xp2nd |
|- ( g e. ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) |
100 |
96 99
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( 2nd ` g ) e. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) |
101 |
1 2 3 4 5 6 7 8 9 10 11 72 73 74 75 78 80 83 85 98 100 16
|
yonedalem3b |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( ( 1st ` w ) M ( 2nd ` w ) ) ( <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` w ) ( 1st ` Z ) ( 2nd ` w ) ) >. ( comp ` T ) ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) ) = ( ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) ( <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` z ) ( 1st ` E ) ( 2nd ` z ) ) >. ( comp ` T ) ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) ( ( 1st ` z ) M ( 2nd ` z ) ) ) ) |
102 |
|
1st2nd2 |
|- ( z e. ( ( O Func S ) X. B ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
103 |
76 102
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
104 |
103
|
fveq2d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` Z ) ` z ) = ( ( 1st ` Z ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
105 |
|
df-ov |
|- ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) = ( ( 1st ` Z ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
106 |
104 105
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` Z ) ` z ) = ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) ) |
107 |
|
1st2nd2 |
|- ( w e. ( ( O Func S ) X. B ) -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
108 |
81 107
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
109 |
108
|
fveq2d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` Z ) ` w ) = ( ( 1st ` Z ) ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
110 |
|
df-ov |
|- ( ( 1st ` w ) ( 1st ` Z ) ( 2nd ` w ) ) = ( ( 1st ` Z ) ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
111 |
109 110
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` Z ) ` w ) = ( ( 1st ` w ) ( 1st ` Z ) ( 2nd ` w ) ) ) |
112 |
106 111
|
opeq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Z ) ` w ) >. = <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` w ) ( 1st ` Z ) ( 2nd ` w ) ) >. ) |
113 |
108
|
fveq2d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` E ) ` w ) = ( ( 1st ` E ) ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
114 |
|
df-ov |
|- ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) = ( ( 1st ` E ) ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
115 |
113 114
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` E ) ` w ) = ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) |
116 |
112 115
|
oveq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Z ) ` w ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) = ( <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` w ) ( 1st ` Z ) ( 2nd ` w ) ) >. ( comp ` T ) ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) ) |
117 |
108
|
fveq2d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( M ` w ) = ( M ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
118 |
|
df-ov |
|- ( ( 1st ` w ) M ( 2nd ` w ) ) = ( M ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
119 |
117 118
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( M ` w ) = ( ( 1st ` w ) M ( 2nd ` w ) ) ) |
120 |
103 108
|
oveq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( z ( 2nd ` Z ) w ) = ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
121 |
|
1st2nd2 |
|- ( g e. ( ( ( 1st ` z ) ( O Nat S ) ( 1st ` w ) ) X. ( ( 2nd ` w ) ( Hom ` C ) ( 2nd ` z ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
122 |
96 121
|
syl |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> g = <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
123 |
120 122
|
fveq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( z ( 2nd ` Z ) w ) ` g ) = ( ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
124 |
|
df-ov |
|- ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) = ( ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
125 |
123 124
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( z ( 2nd ` Z ) w ) ` g ) = ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) ) |
126 |
116 119 125
|
oveq123d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( M ` w ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Z ) ` w ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( ( z ( 2nd ` Z ) w ) ` g ) ) = ( ( ( 1st ` w ) M ( 2nd ` w ) ) ( <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` w ) ( 1st ` Z ) ( 2nd ` w ) ) >. ( comp ` T ) ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` Z ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) ) ) |
127 |
103
|
fveq2d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` E ) ` z ) = ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
128 |
|
df-ov |
|- ( ( 1st ` z ) ( 1st ` E ) ( 2nd ` z ) ) = ( ( 1st ` E ) ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
129 |
127 128
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( 1st ` E ) ` z ) = ( ( 1st ` z ) ( 1st ` E ) ( 2nd ` z ) ) ) |
130 |
106 129
|
opeq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` E ) ` z ) >. = <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` z ) ( 1st ` E ) ( 2nd ` z ) ) >. ) |
131 |
130 115
|
oveq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` E ) ` z ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) = ( <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` z ) ( 1st ` E ) ( 2nd ` z ) ) >. ( comp ` T ) ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) ) |
132 |
103 108
|
oveq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( z ( 2nd ` E ) w ) = ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
133 |
132 122
|
fveq12d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( z ( 2nd ` E ) w ) ` g ) = ( ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
134 |
|
df-ov |
|- ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) = ( ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ` <. ( 1st ` g ) , ( 2nd ` g ) >. ) |
135 |
133 134
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( z ( 2nd ` E ) w ) ` g ) = ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) ) |
136 |
103
|
fveq2d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( M ` z ) = ( M ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
137 |
|
df-ov |
|- ( ( 1st ` z ) M ( 2nd ` z ) ) = ( M ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
138 |
136 137
|
eqtr4di |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( M ` z ) = ( ( 1st ` z ) M ( 2nd ` z ) ) ) |
139 |
131 135 138
|
oveq123d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( ( z ( 2nd ` E ) w ) ` g ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` E ) ` z ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( M ` z ) ) = ( ( ( 1st ` g ) ( <. ( 1st ` z ) , ( 2nd ` z ) >. ( 2nd ` E ) <. ( 1st ` w ) , ( 2nd ` w ) >. ) ( 2nd ` g ) ) ( <. ( ( 1st ` z ) ( 1st ` Z ) ( 2nd ` z ) ) , ( ( 1st ` z ) ( 1st ` E ) ( 2nd ` z ) ) >. ( comp ` T ) ( ( 1st ` w ) ( 1st ` E ) ( 2nd ` w ) ) ) ( ( 1st ` z ) M ( 2nd ` z ) ) ) ) |
140 |
101 126 139
|
3eqtr4d |
|- ( ( ph /\ ( z e. ( ( O Func S ) X. B ) /\ w e. ( ( O Func S ) X. B ) /\ g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ) ) -> ( ( M ` w ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Z ) ` w ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( ( z ( 2nd ` Z ) w ) ` g ) ) = ( ( ( z ( 2nd ` E ) w ) ` g ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` E ) ` z ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( M ` z ) ) ) |
141 |
140
|
ralrimivvva |
|- ( ph -> A. z e. ( ( O Func S ) X. B ) A. w e. ( ( O Func S ) X. B ) A. g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ( ( M ` w ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Z ) ` w ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( ( z ( 2nd ` Z ) w ) ` g ) ) = ( ( ( z ( 2nd ` E ) w ) ` g ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` E ) ` z ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( M ` z ) ) ) |
142 |
|
eqid |
|- ( ( Q Xc. O ) Nat T ) = ( ( Q Xc. O ) Nat T ) |
143 |
|
eqid |
|- ( comp ` T ) = ( comp ` T ) |
144 |
142 33 90 29 143 37 44
|
isnat2 |
|- ( ph -> ( M e. ( Z ( ( Q Xc. O ) Nat T ) E ) <-> ( M e. X_ z e. ( ( O Func S ) X. B ) ( ( ( 1st ` Z ) ` z ) ( Hom ` T ) ( ( 1st ` E ) ` z ) ) /\ A. z e. ( ( O Func S ) X. B ) A. w e. ( ( O Func S ) X. B ) A. g e. ( z ( Hom ` ( Q Xc. O ) ) w ) ( ( M ` w ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Z ) ` w ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( ( z ( 2nd ` Z ) w ) ` g ) ) = ( ( ( z ( 2nd ` E ) w ) ` g ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` E ) ` z ) >. ( comp ` T ) ( ( 1st ` E ) ` w ) ) ( M ` z ) ) ) ) ) |
145 |
71 141 144
|
mpbir2and |
|- ( ph -> M e. ( Z ( ( Q Xc. O ) Nat T ) E ) ) |