Metamath Proof Explorer


Theorem yonedainv

Description: The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y 𝑌 = ( Yon ‘ 𝐶 )
yoneda.b 𝐵 = ( Base ‘ 𝐶 )
yoneda.1 1 = ( Id ‘ 𝐶 )
yoneda.o 𝑂 = ( oppCat ‘ 𝐶 )
yoneda.s 𝑆 = ( SetCat ‘ 𝑈 )
yoneda.t 𝑇 = ( SetCat ‘ 𝑉 )
yoneda.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
yoneda.h 𝐻 = ( HomF𝑄 )
yoneda.r 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 )
yoneda.e 𝐸 = ( 𝑂 evalF 𝑆 )
yoneda.z 𝑍 = ( 𝐻func ( ( ⟨ ( 1st𝑌 ) , tpos ( 2nd𝑌 ) ⟩ ∘func ( 𝑄 2ndF 𝑂 ) ) ⟨,⟩F ( 𝑄 1stF 𝑂 ) ) )
yoneda.c ( 𝜑𝐶 ∈ Cat )
yoneda.w ( 𝜑𝑉𝑊 )
yoneda.u ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
yoneda.v ( 𝜑 → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
yoneda.m 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎𝑥 ) ‘ ( 1𝑥 ) ) ) )
yonedainv.i 𝐼 = ( Inv ‘ 𝑅 )
yonedainv.n 𝑁 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑢 ∈ ( ( 1st𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
Assertion yonedainv ( 𝜑𝑀 ( 𝑍 𝐼 𝐸 ) 𝑁 )

Proof

Step Hyp Ref Expression
1 yoneda.y 𝑌 = ( Yon ‘ 𝐶 )
2 yoneda.b 𝐵 = ( Base ‘ 𝐶 )
3 yoneda.1 1 = ( Id ‘ 𝐶 )
4 yoneda.o 𝑂 = ( oppCat ‘ 𝐶 )
5 yoneda.s 𝑆 = ( SetCat ‘ 𝑈 )
6 yoneda.t 𝑇 = ( SetCat ‘ 𝑉 )
7 yoneda.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
8 yoneda.h 𝐻 = ( HomF𝑄 )
9 yoneda.r 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 )
10 yoneda.e 𝐸 = ( 𝑂 evalF 𝑆 )
11 yoneda.z 𝑍 = ( 𝐻func ( ( ⟨ ( 1st𝑌 ) , tpos ( 2nd𝑌 ) ⟩ ∘func ( 𝑄 2ndF 𝑂 ) ) ⟨,⟩F ( 𝑄 1stF 𝑂 ) ) )
12 yoneda.c ( 𝜑𝐶 ∈ Cat )
13 yoneda.w ( 𝜑𝑉𝑊 )
14 yoneda.u ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
15 yoneda.v ( 𝜑 → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
16 yoneda.m 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎𝑥 ) ‘ ( 1𝑥 ) ) ) )
17 yonedainv.i 𝐼 = ( Inv ‘ 𝑅 )
18 yonedainv.n 𝑁 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑢 ∈ ( ( 1st𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
19 eqid ( 𝑄 ×c 𝑂 ) = ( 𝑄 ×c 𝑂 )
20 7 fucbas ( 𝑂 Func 𝑆 ) = ( Base ‘ 𝑄 )
21 4 2 oppcbas 𝐵 = ( Base ‘ 𝑂 )
22 19 20 21 xpcbas ( ( 𝑂 Func 𝑆 ) × 𝐵 ) = ( Base ‘ ( 𝑄 ×c 𝑂 ) )
23 eqid ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) = ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 ( 𝜑 → ( 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) )
25 24 simpld ( 𝜑𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) )
26 24 simprd ( 𝜑𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) )
27 eqid ( Inv ‘ 𝑇 ) = ( Inv ‘ 𝑇 )
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 yonedalem3 ( 𝜑𝑀 ∈ ( 𝑍 ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) 𝐸 ) )
29 12 adantr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → 𝐶 ∈ Cat )
30 13 adantr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → 𝑉𝑊 )
31 14 adantr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
32 15 adantr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
33 simprl ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ∈ ( 𝑂 Func 𝑆 ) )
34 simprr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → 𝑤𝐵 )
35 1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34 16 yonedalem3a ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ∧ ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ) )
36 35 simprd ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) )
37 29 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝐶 ∈ Cat )
38 30 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑉𝑊 )
39 31 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
40 32 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
41 simplrl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ∈ ( 𝑂 Func 𝑆 ) )
42 simplrr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑤𝐵 )
43 simpr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) )
44 1 2 3 4 5 6 7 8 9 10 11 37 38 39 40 41 42 18 43 yonedalem4c ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑁 𝑤 ) ‘ 𝑏 ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
45 44 fmpttd ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ 𝑏 ) ) : ( ( 1st ) ‘ 𝑤 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
46 2 fvexi 𝐵 ∈ V
47 46 mptex ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ∈ V
48 eqid ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) )
49 47 48 fnmpti ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) Fn ( ( 1st ) ‘ 𝑤 )
50 simpl ( ( 𝑓 = 𝑥 = 𝑤 ) → 𝑓 = )
51 50 fveq2d ( ( 𝑓 = 𝑥 = 𝑤 ) → ( 1st𝑓 ) = ( 1st ) )
52 simpr ( ( 𝑓 = 𝑥 = 𝑤 ) → 𝑥 = 𝑤 )
53 51 52 fveq12d ( ( 𝑓 = 𝑥 = 𝑤 ) → ( ( 1st𝑓 ) ‘ 𝑥 ) = ( ( 1st ) ‘ 𝑤 ) )
54 simplr ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → 𝑥 = 𝑤 )
55 54 oveq2d ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) )
56 simpll ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → 𝑓 = )
57 56 fveq2d ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → ( 2nd𝑓 ) = ( 2nd ) )
58 eqidd ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → 𝑦 = 𝑦 )
59 57 54 58 oveq123d ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → ( 𝑥 ( 2nd𝑓 ) 𝑦 ) = ( 𝑤 ( 2nd ) 𝑦 ) )
60 59 fveq1d ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) = ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) )
61 60 fveq1d ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) = ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) )
62 55 61 mpteq12dv ( ( ( 𝑓 = 𝑥 = 𝑤 ) ∧ 𝑦𝐵 ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) = ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) )
63 62 mpteq2dva ( ( 𝑓 = 𝑥 = 𝑤 ) → ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) = ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) )
64 53 63 mpteq12dv ( ( 𝑓 = 𝑥 = 𝑤 ) → ( 𝑢 ∈ ( ( 1st𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
65 fvex ( ( 1st ) ‘ 𝑤 ) ∈ V
66 65 mptex ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ∈ V
67 64 18 66 ovmpoa ( ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) → ( 𝑁 𝑤 ) = ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
68 67 adantl ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑁 𝑤 ) = ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
69 68 fneq1d ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑁 𝑤 ) Fn ( ( 1st ) ‘ 𝑤 ) ↔ ( 𝑢 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) Fn ( ( 1st ) ‘ 𝑤 ) ) )
70 49 69 mpbiri ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑁 𝑤 ) Fn ( ( 1st ) ‘ 𝑤 ) )
71 dffn5 ( ( 𝑁 𝑤 ) Fn ( ( 1st ) ‘ 𝑤 ) ↔ ( 𝑁 𝑤 ) = ( 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ 𝑏 ) ) )
72 70 71 sylib ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑁 𝑤 ) = ( 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ 𝑏 ) ) )
73 4 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
74 12 73 syl ( 𝜑𝑂 ∈ Cat )
75 74 adantr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → 𝑂 ∈ Cat )
76 15 unssbd ( 𝜑𝑈𝑉 )
77 13 76 ssexd ( 𝜑𝑈 ∈ V )
78 5 setccat ( 𝑈 ∈ V → 𝑆 ∈ Cat )
79 77 78 syl ( 𝜑𝑆 ∈ Cat )
80 79 adantr ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → 𝑆 ∈ Cat )
81 10 75 80 21 33 34 evlf1 ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 1st𝐸 ) 𝑤 ) = ( ( 1st ) ‘ 𝑤 ) )
82 1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34 yonedalem21 ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 1st𝑍 ) 𝑤 ) = ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
83 72 81 82 feq123d ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑁 𝑤 ) : ( ( 1st𝐸 ) 𝑤 ) ⟶ ( ( 1st𝑍 ) 𝑤 ) ↔ ( 𝑏 ∈ ( ( 1st ) ‘ 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ 𝑏 ) ) : ( ( 1st ) ‘ 𝑤 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ) )
84 45 83 mpbird ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑁 𝑤 ) : ( ( 1st𝐸 ) 𝑤 ) ⟶ ( ( 1st𝑍 ) 𝑤 ) )
85 fcompt ( ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑁 𝑤 ) : ( ( 1st𝐸 ) 𝑤 ) ⟶ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) ∘ ( 𝑁 𝑤 ) ) = ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↦ ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) ) )
86 36 84 85 syl2anc ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) ∘ ( 𝑁 𝑤 ) ) = ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↦ ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) ) )
87 81 eleq2d ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↔ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) )
88 87 biimpa ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ) → 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) )
89 29 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝐶 ∈ Cat )
90 30 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑉𝑊 )
91 31 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
92 32 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
93 simplrl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ∈ ( 𝑂 Func 𝑆 ) )
94 simplrr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑤𝐵 )
95 1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 16 yonedalem3a ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ∧ ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ) )
96 95 simpld ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) )
97 96 fveq1d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) = ( ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) )
98 72 44 fmpt3d ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑁 𝑤 ) : ( ( 1st ) ‘ 𝑤 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
99 98 ffvelrnda ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
100 fveq1 ( 𝑎 = ( ( 𝑁 𝑤 ) ‘ 𝑘 ) → ( 𝑎𝑤 ) = ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) )
101 100 fveq1d ( 𝑎 = ( ( 𝑁 𝑤 ) ‘ 𝑘 ) → ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) = ( ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1𝑤 ) ) )
102 eqid ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) )
103 fvex ( ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1𝑤 ) ) ∈ V
104 101 102 103 fvmpt ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) → ( ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) = ( ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1𝑤 ) ) )
105 99 104 syl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) = ( ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1𝑤 ) ) )
106 simpr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) )
107 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
108 2 107 3 89 94 catidcl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( 1𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) )
109 1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 18 106 94 108 yonedalem4b ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1𝑤 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑤 ) ‘ ( 1𝑤 ) ) ‘ 𝑘 ) )
110 eqid ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 )
111 eqid ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 )
112 relfunc Rel ( 𝑂 Func 𝑆 )
113 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ) ( 𝑂 Func 𝑆 ) ( 2nd ) )
114 112 93 113 sylancr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( 1st ) ( 𝑂 Func 𝑆 ) ( 2nd ) )
115 21 110 111 114 94 funcid ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑤 ( 2nd ) 𝑤 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( ( 1st ) ‘ 𝑤 ) ) )
116 4 3 oppcid ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = 1 )
117 89 116 syl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( Id ‘ 𝑂 ) = 1 )
118 117 fveq1d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑤 ) = ( 1𝑤 ) )
119 118 fveq2d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑤 ( 2nd ) 𝑤 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑤 ) ) = ( ( 𝑤 ( 2nd ) 𝑤 ) ‘ ( 1𝑤 ) ) )
120 77 ad2antrr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑈 ∈ V )
121 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
122 21 121 114 funcf1 ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( 1st ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
123 5 120 setcbas ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → 𝑈 = ( Base ‘ 𝑆 ) )
124 123 feq3d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 1st ) : 𝐵𝑈 ↔ ( 1st ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) )
125 122 124 mpbird ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( 1st ) : 𝐵𝑈 )
126 125 94 ffvelrnd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 1st ) ‘ 𝑤 ) ∈ 𝑈 )
127 5 111 120 126 setcid ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( Id ‘ 𝑆 ) ‘ ( ( 1st ) ‘ 𝑤 ) ) = ( I ↾ ( ( 1st ) ‘ 𝑤 ) ) )
128 115 119 127 3eqtr3d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑤 ( 2nd ) 𝑤 ) ‘ ( 1𝑤 ) ) = ( I ↾ ( ( 1st ) ‘ 𝑤 ) ) )
129 128 fveq1d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ) 𝑤 ) ‘ ( 1𝑤 ) ) ‘ 𝑘 ) = ( ( I ↾ ( ( 1st ) ‘ 𝑤 ) ) ‘ 𝑘 ) )
130 fvresi ( 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) → ( ( I ↾ ( ( 1st ) ‘ 𝑤 ) ) ‘ 𝑘 ) = 𝑘 )
131 130 adantl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( I ↾ ( ( 1st ) ‘ 𝑤 ) ) ‘ 𝑘 ) = 𝑘 )
132 109 129 131 3eqtrd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1𝑤 ) ) = 𝑘 )
133 97 105 132 3eqtrd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ) ‘ 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) = 𝑘 )
134 88 133 syldan ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) = 𝑘 )
135 134 mpteq2dva ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↦ ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↦ 𝑘 ) )
136 mptresid ( I ↾ ( ( 1st𝐸 ) 𝑤 ) ) = ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↦ 𝑘 )
137 135 136 eqtr4di ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑘 ∈ ( ( 1st𝐸 ) 𝑤 ) ↦ ( ( 𝑀 𝑤 ) ‘ ( ( 𝑁 𝑤 ) ‘ 𝑘 ) ) ) = ( I ↾ ( ( 1st𝐸 ) 𝑤 ) ) )
138 86 137 eqtrd ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) ∘ ( 𝑁 𝑤 ) ) = ( I ↾ ( ( 1st𝐸 ) 𝑤 ) ) )
139 fcompt ( ( ( 𝑁 𝑤 ) : ( ( 1st𝐸 ) 𝑤 ) ⟶ ( ( 1st𝑍 ) 𝑤 ) ∧ ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ) → ( ( 𝑁 𝑤 ) ∘ ( 𝑀 𝑤 ) ) = ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ) )
140 84 36 139 syl2anc ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑁 𝑤 ) ∘ ( 𝑀 𝑤 ) ) = ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ) )
141 eqid ( 𝑂 Nat 𝑆 ) = ( 𝑂 Nat 𝑆 )
142 29 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝐶 ∈ Cat )
143 30 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑉𝑊 )
144 31 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
145 32 adantr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
146 simplrl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ∈ ( 𝑂 Func 𝑆 ) )
147 simplrr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑤𝐵 )
148 81 feq3d ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ↔ ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑤 ) ) )
149 36 148 mpbid ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑤 ) )
150 149 ffvelrnda ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ∈ ( ( 1st ) ‘ 𝑤 ) )
151 1 2 3 4 5 6 7 8 9 10 11 142 143 144 145 146 147 18 150 yonedalem4c ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
152 141 151 nat1st2nd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
153 141 152 21 natfn ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) Fn 𝐵 )
154 82 eleq2d ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↔ 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ) )
155 154 biimpa ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
156 141 155 nat1st2nd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑏 ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
157 141 156 21 natfn ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑏 Fn 𝐵 )
158 142 adantr ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → 𝐶 ∈ Cat )
159 147 adantr ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → 𝑤𝐵 )
160 simpr ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → 𝑧𝐵 )
161 1 2 158 159 107 160 yon11 ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
162 161 eleq2d ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↔ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
163 162 biimpa ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) → 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
164 158 adantr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝐶 ∈ Cat )
165 143 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑉𝑊 )
166 144 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
167 145 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
168 146 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ∈ ( 𝑂 Func 𝑆 ) )
169 159 adantr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑤𝐵 )
170 150 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ∈ ( ( 1st ) ‘ 𝑤 ) )
171 simplr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧𝐵 )
172 simpr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
173 1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 18 170 171 172 yonedalem4b ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) )
174 1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 16 yonedalem3a ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ∧ ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ) )
175 174 simpld ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) )
176 175 fveq1d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ 𝑏 ) = ( ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ‘ 𝑏 ) )
177 155 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) )
178 fveq1 ( 𝑎 = 𝑏 → ( 𝑎𝑤 ) = ( 𝑏𝑤 ) )
179 178 fveq1d ( 𝑎 = 𝑏 → ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) = ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) )
180 fvex ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) ∈ V
181 179 102 180 fvmpt ( 𝑏 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) → ( ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ‘ 𝑏 ) = ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) )
182 177 181 syl ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ) ↦ ( ( 𝑎𝑤 ) ‘ ( 1𝑤 ) ) ) ‘ 𝑏 ) = ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) )
183 176 182 eqtrd ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑀 𝑤 ) ‘ 𝑏 ) = ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) )
184 183 fveq2d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) ) )
185 156 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑏 ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
186 eqid ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 )
187 eqid ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 )
188 107 4 oppchom ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 )
189 172 188 eleqtrrdi ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑘 ∈ ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) )
190 141 185 21 186 187 169 171 189 nati ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏𝑧 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ( 𝑏𝑤 ) ) )
191 77 ad2antrr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑈 ∈ V )
192 191 adantr ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → 𝑈 ∈ V )
193 192 adantr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑈 ∈ V )
194 relfunc Rel ( 𝐶 Func 𝑄 )
195 1 12 4 5 7 77 14 yoncl ( 𝜑𝑌 ∈ ( 𝐶 Func 𝑄 ) )
196 1st2ndbr ( ( Rel ( 𝐶 Func 𝑄 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
197 194 195 196 sylancr ( 𝜑 → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
198 2 20 197 funcf1 ( 𝜑 → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) )
199 198 ad2antrr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) )
200 199 147 ffvelrnd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 1st𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) )
201 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ( ( 1st𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
202 112 200 201 sylancr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
203 21 121 202 funcf1 ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
204 5 191 setcbas ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → 𝑈 = ( Base ‘ 𝑆 ) )
205 204 feq3d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) : 𝐵𝑈 ↔ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) )
206 203 205 mpbird ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) : 𝐵𝑈 )
207 206 147 ffvelrnd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ∈ 𝑈 )
208 207 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ∈ 𝑈 )
209 206 ffvelrnda ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑈 )
210 209 adantr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑈 )
211 112 146 113 sylancr ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st ) ( 𝑂 Func 𝑆 ) ( 2nd ) )
212 21 121 211 funcf1 ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
213 204 feq3d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 1st ) : 𝐵𝑈 ↔ ( 1st ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) )
214 212 213 mpbird ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1st ) : 𝐵𝑈 )
215 214 ffvelrnda ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( 1st ) ‘ 𝑧 ) ∈ 𝑈 )
216 215 adantr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ) ‘ 𝑧 ) ∈ 𝑈 )
217 eqid ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 )
218 202 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
219 21 186 217 218 169 171 funcf2 ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) : ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) ⟶ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) )
220 219 189 ffvelrnd ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) )
221 5 193 217 208 210 elsetchom ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) ↔ ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) )
222 220 221 mpbid ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) )
223 156 adantr ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → 𝑏 ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
224 141 223 21 217 160 natcl ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( 𝑏𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) )
225 5 192 217 209 215 elsetchom ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( 𝑏𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ↔ ( 𝑏𝑧 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ) ‘ 𝑧 ) ) )
226 224 225 mpbid ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( 𝑏𝑧 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ) ‘ 𝑧 ) )
227 226 adantr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑏𝑧 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ) ‘ 𝑧 ) )
228 5 193 187 208 210 216 222 227 setcco ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏𝑧 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) = ( ( 𝑏𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) )
229 214 147 ffvelrnd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 1st ) ‘ 𝑤 ) ∈ 𝑈 )
230 229 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ) ‘ 𝑤 ) ∈ 𝑈 )
231 141 156 21 217 147 natcl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 𝑏𝑤 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑤 ) ) )
232 5 191 217 207 229 elsetchom ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑏𝑤 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑤 ) ) ↔ ( 𝑏𝑤 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑤 ) ) )
233 231 232 mpbid ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 𝑏𝑤 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑤 ) )
234 233 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑏𝑤 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑤 ) )
235 112 168 113 sylancr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ) ( 𝑂 Func 𝑆 ) ( 2nd ) )
236 21 186 217 235 169 171 funcf2 ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑤 ( 2nd ) 𝑧 ) : ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) ⟶ ( ( ( 1st ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) )
237 236 189 ffvelrnd ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) )
238 5 193 217 230 216 elsetchom ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ↔ ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ) ‘ 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑧 ) ) )
239 237 238 mpbid ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ) ‘ 𝑤 ) ⟶ ( ( 1st ) ‘ 𝑧 ) )
240 5 193 187 208 230 216 234 239 setcco ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ( ⟨ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ) ‘ 𝑤 ) ⟩ ( comp ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ( 𝑏𝑤 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏𝑤 ) ) )
241 190 228 240 3eqtr3d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏𝑤 ) ) )
242 241 fveq1d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑏𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) ‘ ( 1𝑤 ) ) = ( ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏𝑤 ) ) ‘ ( 1𝑤 ) ) )
243 2 107 3 142 147 catidcl ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) )
244 1 2 142 147 107 147 yon11 ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) = ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) )
245 243 244 eleqtrrd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( 1𝑤 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) )
246 245 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1𝑤 ) ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) )
247 222 246 fvco3d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑏𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) ‘ ( 1𝑤 ) ) = ( ( 𝑏𝑧 ) ‘ ( ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1𝑤 ) ) ) )
248 233 245 fvco3d ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏𝑤 ) ) ‘ ( 1𝑤 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) ) )
249 248 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏𝑤 ) ) ‘ ( 1𝑤 ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) ) )
250 242 247 249 3eqtr3d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏𝑧 ) ‘ ( ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1𝑤 ) ) ) = ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) ) )
251 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
252 243 ad2antrr ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) )
253 1 2 164 169 107 169 251 171 172 252 yon12 ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1𝑤 ) ) = ( ( 1𝑤 ) ( ⟨ 𝑧 , 𝑤 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑘 ) )
254 2 107 3 164 171 251 169 172 catlid ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1𝑤 ) ( ⟨ 𝑧 , 𝑤 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑘 ) = 𝑘 )
255 253 254 eqtrd ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1𝑤 ) ) = 𝑘 )
256 255 fveq2d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏𝑧 ) ‘ ( ( ( 𝑤 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1𝑤 ) ) ) = ( ( 𝑏𝑧 ) ‘ 𝑘 ) )
257 250 256 eqtr3d ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏𝑤 ) ‘ ( 1𝑤 ) ) ) = ( ( 𝑏𝑧 ) ‘ 𝑘 ) )
258 173 184 257 3eqtrd ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝑏𝑧 ) ‘ 𝑘 ) )
259 163 258 syldan ( ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) ∧ 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) → ( ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝑏𝑧 ) ‘ 𝑘 ) )
260 259 mpteq2dva ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( 𝑏𝑧 ) ‘ 𝑘 ) ) )
261 152 adantr ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ) , ( 2nd ) ⟩ ) )
262 141 261 21 217 160 natcl ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) )
263 5 192 217 209 215 elsetchom ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ) ‘ 𝑧 ) ) ↔ ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ) ‘ 𝑧 ) ) )
264 262 263 mpbid ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ) ‘ 𝑧 ) )
265 264 feqmptd ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) = ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) )
266 226 feqmptd ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( 𝑏𝑧 ) = ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( 𝑏𝑧 ) ‘ 𝑘 ) ) )
267 260 265 266 3eqtr4d ( ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) ∧ 𝑧𝐵 ) → ( ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) = ( 𝑏𝑧 ) )
268 153 157 267 eqfnfvd ( ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ) → ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) = 𝑏 )
269 268 mpteq2dva ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ) = ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↦ 𝑏 ) )
270 mptresid ( I ↾ ( ( 1st𝑍 ) 𝑤 ) ) = ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↦ 𝑏 )
271 269 270 eqtr4di ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑏 ∈ ( ( 1st𝑍 ) 𝑤 ) ↦ ( ( 𝑁 𝑤 ) ‘ ( ( 𝑀 𝑤 ) ‘ 𝑏 ) ) ) = ( I ↾ ( ( 1st𝑍 ) 𝑤 ) ) )
272 140 271 eqtrd ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑁 𝑤 ) ∘ ( 𝑀 𝑤 ) ) = ( I ↾ ( ( 1st𝑍 ) 𝑤 ) ) )
273 fcof1o ( ( ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) ⟶ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑁 𝑤 ) : ( ( 1st𝐸 ) 𝑤 ) ⟶ ( ( 1st𝑍 ) 𝑤 ) ) ∧ ( ( ( 𝑀 𝑤 ) ∘ ( 𝑁 𝑤 ) ) = ( I ↾ ( ( 1st𝐸 ) 𝑤 ) ) ∧ ( ( 𝑁 𝑤 ) ∘ ( 𝑀 𝑤 ) ) = ( I ↾ ( ( 1st𝑍 ) 𝑤 ) ) ) ) → ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) –1-1-onto→ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑀 𝑤 ) = ( 𝑁 𝑤 ) ) )
274 36 84 138 272 273 syl22anc ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) –1-1-onto→ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑀 𝑤 ) = ( 𝑁 𝑤 ) ) )
275 eqcom ( ( 𝑀 𝑤 ) = ( 𝑁 𝑤 ) ↔ ( 𝑁 𝑤 ) = ( 𝑀 𝑤 ) )
276 275 anbi2i ( ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) –1-1-onto→ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑀 𝑤 ) = ( 𝑁 𝑤 ) ) ↔ ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) –1-1-onto→ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑁 𝑤 ) = ( 𝑀 𝑤 ) ) )
277 274 276 sylib ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) –1-1-onto→ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑁 𝑤 ) = ( 𝑀 𝑤 ) ) )
278 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
279 relfunc Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 )
280 1st2ndbr ( ( Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) → ( 1st𝑍 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝑍 ) )
281 279 25 280 sylancr ( 𝜑 → ( 1st𝑍 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝑍 ) )
282 22 278 281 funcf1 ( 𝜑 → ( 1st𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) )
283 6 13 setcbas ( 𝜑𝑉 = ( Base ‘ 𝑇 ) )
284 283 feq3d ( 𝜑 → ( ( 1st𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 ↔ ( 1st𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) ) )
285 282 284 mpbird ( 𝜑 → ( 1st𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 )
286 285 fovrnda ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 1st𝑍 ) 𝑤 ) ∈ 𝑉 )
287 1st2ndbr ( ( Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) → ( 1st𝐸 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝐸 ) )
288 279 26 287 sylancr ( 𝜑 → ( 1st𝐸 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd𝐸 ) )
289 22 278 288 funcf1 ( 𝜑 → ( 1st𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) )
290 283 feq3d ( 𝜑 → ( ( 1st𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 ↔ ( 1st𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) ) )
291 289 290 mpbird ( 𝜑 → ( 1st𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 )
292 291 fovrnda ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 1st𝐸 ) 𝑤 ) ∈ 𝑉 )
293 6 30 286 292 27 setcinv ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( ( 𝑀 𝑤 ) ( ( ( 1st𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) 𝑤 ) ) ( 𝑁 𝑤 ) ↔ ( ( 𝑀 𝑤 ) : ( ( 1st𝑍 ) 𝑤 ) –1-1-onto→ ( ( 1st𝐸 ) 𝑤 ) ∧ ( 𝑁 𝑤 ) = ( 𝑀 𝑤 ) ) ) )
294 277 293 mpbird ( ( 𝜑 ∧ ( ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤𝐵 ) ) → ( 𝑀 𝑤 ) ( ( ( 1st𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) 𝑤 ) ) ( 𝑁 𝑤 ) )
295 294 ralrimivva ( 𝜑 → ∀ ∈ ( 𝑂 Func 𝑆 ) ∀ 𝑤𝐵 ( 𝑀 𝑤 ) ( ( ( 1st𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) 𝑤 ) ) ( 𝑁 𝑤 ) )
296 fveq2 ( 𝑧 = ⟨ , 𝑤 ⟩ → ( 𝑀𝑧 ) = ( 𝑀 ‘ ⟨ , 𝑤 ⟩ ) )
297 df-ov ( 𝑀 𝑤 ) = ( 𝑀 ‘ ⟨ , 𝑤 ⟩ )
298 296 297 eqtr4di ( 𝑧 = ⟨ , 𝑤 ⟩ → ( 𝑀𝑧 ) = ( 𝑀 𝑤 ) )
299 fveq2 ( 𝑧 = ⟨ , 𝑤 ⟩ → ( ( 1st𝑍 ) ‘ 𝑧 ) = ( ( 1st𝑍 ) ‘ ⟨ , 𝑤 ⟩ ) )
300 df-ov ( ( 1st𝑍 ) 𝑤 ) = ( ( 1st𝑍 ) ‘ ⟨ , 𝑤 ⟩ )
301 299 300 eqtr4di ( 𝑧 = ⟨ , 𝑤 ⟩ → ( ( 1st𝑍 ) ‘ 𝑧 ) = ( ( 1st𝑍 ) 𝑤 ) )
302 fveq2 ( 𝑧 = ⟨ , 𝑤 ⟩ → ( ( 1st𝐸 ) ‘ 𝑧 ) = ( ( 1st𝐸 ) ‘ ⟨ , 𝑤 ⟩ ) )
303 df-ov ( ( 1st𝐸 ) 𝑤 ) = ( ( 1st𝐸 ) ‘ ⟨ , 𝑤 ⟩ )
304 302 303 eqtr4di ( 𝑧 = ⟨ , 𝑤 ⟩ → ( ( 1st𝐸 ) ‘ 𝑧 ) = ( ( 1st𝐸 ) 𝑤 ) )
305 301 304 oveq12d ( 𝑧 = ⟨ , 𝑤 ⟩ → ( ( ( 1st𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) = ( ( ( 1st𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) 𝑤 ) ) )
306 fveq2 ( 𝑧 = ⟨ , 𝑤 ⟩ → ( 𝑁𝑧 ) = ( 𝑁 ‘ ⟨ , 𝑤 ⟩ ) )
307 df-ov ( 𝑁 𝑤 ) = ( 𝑁 ‘ ⟨ , 𝑤 ⟩ )
308 306 307 eqtr4di ( 𝑧 = ⟨ , 𝑤 ⟩ → ( 𝑁𝑧 ) = ( 𝑁 𝑤 ) )
309 298 305 308 breq123d ( 𝑧 = ⟨ , 𝑤 ⟩ → ( ( 𝑀𝑧 ) ( ( ( 1st𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) ( 𝑁𝑧 ) ↔ ( 𝑀 𝑤 ) ( ( ( 1st𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) 𝑤 ) ) ( 𝑁 𝑤 ) ) )
310 309 ralxp ( ∀ 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑀𝑧 ) ( ( ( 1st𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) ( 𝑁𝑧 ) ↔ ∀ ∈ ( 𝑂 Func 𝑆 ) ∀ 𝑤𝐵 ( 𝑀 𝑤 ) ( ( ( 1st𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) 𝑤 ) ) ( 𝑁 𝑤 ) )
311 295 310 sylibr ( 𝜑 → ∀ 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑀𝑧 ) ( ( ( 1st𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) ( 𝑁𝑧 ) )
312 311 r19.21bi ( ( 𝜑𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ) → ( 𝑀𝑧 ) ( ( ( 1st𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st𝐸 ) ‘ 𝑧 ) ) ( 𝑁𝑧 ) )
313 9 22 23 25 26 17 27 28 312 invfuc ( 𝜑𝑀 ( 𝑍 𝐼 𝐸 ) ( 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↦ ( 𝑁𝑧 ) ) )
314 fvex ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ V
315 314 mptex ( 𝑢 ∈ ( ( 1st𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ∈ V
316 18 315 fnmpoi 𝑁 Fn ( ( 𝑂 Func 𝑆 ) × 𝐵 )
317 dffn5 ( 𝑁 Fn ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↔ 𝑁 = ( 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↦ ( 𝑁𝑧 ) ) )
318 316 317 mpbi 𝑁 = ( 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↦ ( 𝑁𝑧 ) )
319 313 318 breqtrrdi ( 𝜑𝑀 ( 𝑍 𝐼 𝐸 ) 𝑁 )