Step |
Hyp |
Ref |
Expression |
1 |
|
yoneda.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yoneda.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
yoneda.1 |
⊢ 1 = ( Id ‘ 𝐶 ) |
4 |
|
yoneda.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
5 |
|
yoneda.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
6 |
|
yoneda.t |
⊢ 𝑇 = ( SetCat ‘ 𝑉 ) |
7 |
|
yoneda.q |
⊢ 𝑄 = ( 𝑂 FuncCat 𝑆 ) |
8 |
|
yoneda.h |
⊢ 𝐻 = ( HomF ‘ 𝑄 ) |
9 |
|
yoneda.r |
⊢ 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 ) |
10 |
|
yoneda.e |
⊢ 𝐸 = ( 𝑂 evalF 𝑆 ) |
11 |
|
yoneda.z |
⊢ 𝑍 = ( 𝐻 ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) |
12 |
|
yoneda.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
13 |
|
yoneda.w |
⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) |
14 |
|
yoneda.u |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
15 |
|
yoneda.v |
⊢ ( 𝜑 → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
16 |
|
yoneda.m |
⊢ 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥 ∈ 𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎 ‘ 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) ) ) |
17 |
|
yonedainv.i |
⊢ 𝐼 = ( Inv ‘ 𝑅 ) |
18 |
|
yonedainv.n |
⊢ 𝑁 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥 ∈ 𝐵 ↦ ( 𝑢 ∈ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ) |
19 |
|
eqid |
⊢ ( 𝑄 ×c 𝑂 ) = ( 𝑄 ×c 𝑂 ) |
20 |
7
|
fucbas |
⊢ ( 𝑂 Func 𝑆 ) = ( Base ‘ 𝑄 ) |
21 |
4 2
|
oppcbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
22 |
19 20 21
|
xpcbas |
⊢ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) = ( Base ‘ ( 𝑄 ×c 𝑂 ) ) |
23 |
|
eqid |
⊢ ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) = ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
yonedalem1 |
⊢ ( 𝜑 → ( 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) |
26 |
24
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) |
27 |
|
eqid |
⊢ ( Inv ‘ 𝑇 ) = ( Inv ‘ 𝑇 ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
yonedalem3 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑍 ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) 𝐸 ) ) |
29 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → 𝐶 ∈ Cat ) |
30 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → 𝑉 ∈ 𝑊 ) |
31 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
32 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ℎ ∈ ( 𝑂 Func 𝑆 ) ) |
34 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34 16
|
yonedalem3a |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ∧ ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ) |
36 |
35
|
simprd |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) |
37 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝐶 ∈ Cat ) |
38 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑉 ∈ 𝑊 ) |
39 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
40 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
41 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ℎ ∈ ( 𝑂 Func 𝑆 ) ) |
42 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑤 ∈ 𝐵 ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
44 |
1 2 3 4 5 6 7 8 9 10 11 37 38 39 40 41 42 18 43
|
yonedalem4c |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ‘ 𝑏 ) ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
45 |
44
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑏 ) ) : ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ⟶ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
46 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
47 |
46
|
mptex |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ∈ V |
48 |
|
eqid |
⊢ ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) |
49 |
47 48
|
fnmpti |
⊢ ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) Fn ( ( 1st ‘ ℎ ) ‘ 𝑤 ) |
50 |
|
simpl |
⊢ ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) → 𝑓 = ℎ ) |
51 |
50
|
fveq2d |
⊢ ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) → ( 1st ‘ 𝑓 ) = ( 1st ‘ ℎ ) ) |
52 |
|
simpr |
⊢ ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) → 𝑥 = 𝑤 ) |
53 |
51 52
|
fveq12d |
⊢ ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) = ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
54 |
|
simplr |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝑤 ) |
55 |
54
|
oveq2d |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
56 |
|
simpll |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑓 = ℎ ) |
57 |
56
|
fveq2d |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → ( 2nd ‘ 𝑓 ) = ( 2nd ‘ ℎ ) ) |
58 |
|
eqidd |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 = 𝑦 ) |
59 |
57 54 58
|
oveq123d |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) = ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ) |
60 |
59
|
fveq1d |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) = ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ) |
61 |
60
|
fveq1d |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) |
62 |
55 61
|
mpteq12dv |
⊢ ( ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) = ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) |
63 |
62
|
mpteq2dva |
⊢ ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) |
64 |
53 63
|
mpteq12dv |
⊢ ( ( 𝑓 = ℎ ∧ 𝑥 = 𝑤 ) → ( 𝑢 ∈ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ) |
65 |
|
fvex |
⊢ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ∈ V |
66 |
65
|
mptex |
⊢ ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ∈ V |
67 |
64 18 66
|
ovmpoa |
⊢ ( ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) → ( ℎ 𝑁 𝑤 ) = ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑁 𝑤 ) = ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ) |
69 |
68
|
fneq1d |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑁 𝑤 ) Fn ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↔ ( 𝑢 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) Fn ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
70 |
49 69
|
mpbiri |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑁 𝑤 ) Fn ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
71 |
|
dffn5 |
⊢ ( ( ℎ 𝑁 𝑤 ) Fn ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↔ ( ℎ 𝑁 𝑤 ) = ( 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑏 ) ) ) |
72 |
70 71
|
sylib |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑁 𝑤 ) = ( 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑏 ) ) ) |
73 |
4
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
74 |
12 73
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → 𝑂 ∈ Cat ) |
76 |
15
|
unssbd |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
77 |
13 76
|
ssexd |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
78 |
5
|
setccat |
⊢ ( 𝑈 ∈ V → 𝑆 ∈ Cat ) |
79 |
77 78
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Cat ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → 𝑆 ∈ Cat ) |
81 |
10 75 80 21 33 34
|
evlf1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) = ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
82 |
1 2 3 4 5 6 7 8 9 10 11 29 30 31 32 33 34
|
yonedalem21 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) = ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
83 |
72 81 82
|
feq123d |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑁 𝑤 ) : ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↔ ( 𝑏 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑏 ) ) : ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ⟶ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) ) |
84 |
45 83
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑁 𝑤 ) : ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) |
85 |
|
fcompt |
⊢ ( ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ( ℎ 𝑁 𝑤 ) : ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ∘ ( ℎ 𝑁 𝑤 ) ) = ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↦ ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) ) ) |
86 |
36 84 85
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) ∘ ( ℎ 𝑁 𝑤 ) ) = ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↦ ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) ) ) |
87 |
81
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↔ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
88 |
87
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) → 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
89 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝐶 ∈ Cat ) |
90 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑉 ∈ 𝑊 ) |
91 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
92 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
93 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ℎ ∈ ( 𝑂 Func 𝑆 ) ) |
94 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑤 ∈ 𝐵 ) |
95 |
1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 16
|
yonedalem3a |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ∧ ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ) |
96 |
95
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ℎ 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
97 |
96
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) = ( ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) ) |
98 |
72 44
|
fmpt3d |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑁 𝑤 ) : ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ⟶ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
99 |
98
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
100 |
|
fveq1 |
⊢ ( 𝑎 = ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) → ( 𝑎 ‘ 𝑤 ) = ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ) |
101 |
100
|
fveq1d |
⊢ ( 𝑎 = ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) → ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
102 |
|
eqid |
⊢ ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) = ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
103 |
|
fvex |
⊢ ( ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ∈ V |
104 |
101 102 103
|
fvmpt |
⊢ ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) → ( ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) = ( ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
105 |
99 104
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) = ( ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
106 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
107 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
108 |
2 107 3 89 94
|
catidcl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( 1 ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
109 |
1 2 3 4 5 6 7 8 9 10 11 89 90 91 92 93 94 18 106 94 108
|
yonedalem4b |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ‘ 𝑘 ) ) |
110 |
|
eqid |
⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) |
111 |
|
eqid |
⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) |
112 |
|
relfunc |
⊢ Rel ( 𝑂 Func 𝑆 ) |
113 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ℎ ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ℎ ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ℎ ) ) |
114 |
112 93 113
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( 1st ‘ ℎ ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ℎ ) ) |
115 |
21 110 111 114 94
|
funcid |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑤 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑤 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
116 |
4 3
|
oppcid |
⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = 1 ) |
117 |
89 116
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( Id ‘ 𝑂 ) = 1 ) |
118 |
117
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑤 ) = ( 1 ‘ 𝑤 ) ) |
119 |
118
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑤 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑤 ) ) = ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
120 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑈 ∈ V ) |
121 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
122 |
21 121 114
|
funcf1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( 1st ‘ ℎ ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
123 |
5 120
|
setcbas |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → 𝑈 = ( Base ‘ 𝑆 ) ) |
124 |
123
|
feq3d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( 1st ‘ ℎ ) : 𝐵 ⟶ 𝑈 ↔ ( 1st ‘ ℎ ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) |
125 |
122 124
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( 1st ‘ ℎ ) : 𝐵 ⟶ 𝑈 ) |
126 |
125 94
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ∈ 𝑈 ) |
127 |
5 111 120 126
|
setcid |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( Id ‘ 𝑆 ) ‘ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) = ( I ↾ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
128 |
115 119 127
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) = ( I ↾ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
129 |
128
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ‘ 𝑘 ) = ( ( I ↾ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ‘ 𝑘 ) ) |
130 |
|
fvresi |
⊢ ( 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) → ( ( I ↾ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ‘ 𝑘 ) = 𝑘 ) |
131 |
130
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( I ↾ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ‘ 𝑘 ) = 𝑘 ) |
132 |
109 129 131
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) = 𝑘 ) |
133 |
97 105 132
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) = 𝑘 ) |
134 |
88 133
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) = 𝑘 ) |
135 |
134
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↦ ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↦ 𝑘 ) ) |
136 |
|
mptresid |
⊢ ( I ↾ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) = ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↦ 𝑘 ) |
137 |
135 136
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑘 ∈ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↦ ( ( ℎ 𝑀 𝑤 ) ‘ ( ( ℎ 𝑁 𝑤 ) ‘ 𝑘 ) ) ) = ( I ↾ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ) |
138 |
86 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) ∘ ( ℎ 𝑁 𝑤 ) ) = ( I ↾ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ) |
139 |
|
fcompt |
⊢ ( ( ( ℎ 𝑁 𝑤 ) : ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ∧ ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ∘ ( ℎ 𝑀 𝑤 ) ) = ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ) ) |
140 |
84 36 139
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑁 𝑤 ) ∘ ( ℎ 𝑀 𝑤 ) ) = ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ) ) |
141 |
|
eqid |
⊢ ( 𝑂 Nat 𝑆 ) = ( 𝑂 Nat 𝑆 ) |
142 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝐶 ∈ Cat ) |
143 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑉 ∈ 𝑊 ) |
144 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
145 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
146 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ℎ ∈ ( 𝑂 Func 𝑆 ) ) |
147 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑤 ∈ 𝐵 ) |
148 |
81
|
feq3d |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ↔ ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
149 |
36 148
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
150 |
149
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
151 |
1 2 3 4 5 6 7 8 9 10 11 142 143 144 145 146 147 18 150
|
yonedalem4c |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
152 |
141 151
|
nat1st2nd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ∈ ( 〈 ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 〉 ( 𝑂 Nat 𝑆 ) 〈 ( 1st ‘ ℎ ) , ( 2nd ‘ ℎ ) 〉 ) ) |
153 |
141 152 21
|
natfn |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) Fn 𝐵 ) |
154 |
82
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↔ 𝑏 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) ) |
155 |
154
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑏 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
156 |
141 155
|
nat1st2nd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑏 ∈ ( 〈 ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 〉 ( 𝑂 Nat 𝑆 ) 〈 ( 1st ‘ ℎ ) , ( 2nd ‘ ℎ ) 〉 ) ) |
157 |
141 156 21
|
natfn |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑏 Fn 𝐵 ) |
158 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
159 |
147
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
160 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
161 |
1 2 158 159 107 160
|
yon11 |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
162 |
161
|
eleq2d |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↔ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) |
163 |
162
|
biimpa |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) → 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
164 |
158
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝐶 ∈ Cat ) |
165 |
143
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑉 ∈ 𝑊 ) |
166 |
144
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
167 |
145
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 ) |
168 |
146
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ℎ ∈ ( 𝑂 Func 𝑆 ) ) |
169 |
159
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑤 ∈ 𝐵 ) |
170 |
150
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ∈ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
171 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧 ∈ 𝐵 ) |
172 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
173 |
1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 18 170 171 172
|
yonedalem4b |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ) |
174 |
1 2 3 4 5 6 7 8 9 10 11 164 165 166 167 168 169 16
|
yonedalem3a |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ∧ ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ) |
175 |
174
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ℎ 𝑀 𝑤 ) = ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
176 |
175
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) = ( ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ‘ 𝑏 ) ) |
177 |
155
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑏 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ) |
178 |
|
fveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ 𝑤 ) = ( 𝑏 ‘ 𝑤 ) ) |
179 |
178
|
fveq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
180 |
|
fvex |
⊢ ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ∈ V |
181 |
179 102 180
|
fvmpt |
⊢ ( 𝑏 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) → ( ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ‘ 𝑏 ) = ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
182 |
177 181
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ( 𝑂 Nat 𝑆 ) ℎ ) ↦ ( ( 𝑎 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ‘ 𝑏 ) = ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
183 |
176 182
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) = ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) |
184 |
183
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
185 |
156
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑏 ∈ ( 〈 ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 〉 ( 𝑂 Nat 𝑆 ) 〈 ( 1st ‘ ℎ ) , ( 2nd ‘ ℎ ) 〉 ) ) |
186 |
|
eqid |
⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) |
187 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
188 |
107 4
|
oppchom |
⊢ ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) |
189 |
172 188
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑘 ∈ ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
190 |
141 185 21 186 187 169 171 189
|
nati |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ℎ ) ‘ 𝑤 ) 〉 ( comp ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ( 𝑏 ‘ 𝑤 ) ) ) |
191 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑈 ∈ V ) |
192 |
191
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑈 ∈ V ) |
193 |
192
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑈 ∈ V ) |
194 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝑄 ) |
195 |
1 12 4 5 7 77 14
|
yoncl |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) |
196 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝑄 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st ‘ 𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝑌 ) ) |
197 |
194 195 196
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd ‘ 𝑌 ) ) |
198 |
2 20 197
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) ) |
199 |
198
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ 𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) ) |
200 |
199 147
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) ) |
201 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
202 |
112 200 201
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
203 |
21 121 202
|
funcf1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
204 |
5 191
|
setcbas |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → 𝑈 = ( Base ‘ 𝑆 ) ) |
205 |
204
|
feq3d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ 𝑈 ↔ ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) |
206 |
203 205
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ 𝑈 ) |
207 |
206 147
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ∈ 𝑈 ) |
208 |
207
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ∈ 𝑈 ) |
209 |
206
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑈 ) |
210 |
209
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑈 ) |
211 |
112 146 113
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ ℎ ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ℎ ) ) |
212 |
21 121 211
|
funcf1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ ℎ ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
213 |
204
|
feq3d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ℎ ) : 𝐵 ⟶ 𝑈 ↔ ( 1st ‘ ℎ ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) |
214 |
212 213
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1st ‘ ℎ ) : 𝐵 ⟶ 𝑈 ) |
215 |
214
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ∈ 𝑈 ) |
216 |
215
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ∈ 𝑈 ) |
217 |
|
eqid |
⊢ ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 ) |
218 |
202
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
219 |
21 186 217 218 169 171
|
funcf2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) : ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) ⟶ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) ) |
220 |
219 189
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) ) |
221 |
5 193 217 208 210
|
elsetchom |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) ↔ ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) ) |
222 |
220 221
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) |
223 |
156
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑏 ∈ ( 〈 ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 〉 ( 𝑂 Nat 𝑆 ) 〈 ( 1st ‘ ℎ ) , ( 2nd ‘ ℎ ) 〉 ) ) |
224 |
141 223 21 217 160
|
natcl |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
225 |
5 192 217 209 215
|
elsetchom |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑏 ‘ 𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ↔ ( 𝑏 ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
226 |
224 225
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) |
227 |
226
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑏 ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) |
228 |
5 193 187 208 210 216 222 227
|
setcco |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) = ( ( 𝑏 ‘ 𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) ) |
229 |
214 147
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ∈ 𝑈 ) |
230 |
229
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ∈ 𝑈 ) |
231 |
141 156 21 217 147
|
natcl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 𝑏 ‘ 𝑤 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
232 |
5 191 217 207 229
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 𝑏 ‘ 𝑤 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ↔ ( 𝑏 ‘ 𝑤 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) ) |
233 |
231 232
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 𝑏 ‘ 𝑤 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
234 |
233
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑏 ‘ 𝑤 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ) |
235 |
112 168 113
|
sylancr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ‘ ℎ ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ℎ ) ) |
236 |
21 186 217 235 169 171
|
funcf2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) : ( 𝑤 ( Hom ‘ 𝑂 ) 𝑧 ) ⟶ ( ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
237 |
236 189
|
ffvelrnd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
238 |
5 193 217 230 216
|
elsetchom |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ↔ ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
239 |
237 238
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) : ( ( 1st ‘ ℎ ) ‘ 𝑤 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) |
240 |
5 193 187 208 230 216 234 239
|
setcco |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) , ( ( 1st ‘ ℎ ) ‘ 𝑤 ) 〉 ( comp ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ( 𝑏 ‘ 𝑤 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏 ‘ 𝑤 ) ) ) |
241 |
190 228 240
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏 ‘ 𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏 ‘ 𝑤 ) ) ) |
242 |
241
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑏 ‘ 𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏 ‘ 𝑤 ) ) ‘ ( 1 ‘ 𝑤 ) ) ) |
243 |
2 107 3 142 147
|
catidcl |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1 ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
244 |
1 2 142 147 107 147
|
yon11 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) = ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
245 |
243 244
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( 1 ‘ 𝑤 ) ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ) |
246 |
245
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1 ‘ 𝑤 ) ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑤 ) ) |
247 |
222 246
|
fvco3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑏 ‘ 𝑧 ) ∘ ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( 𝑏 ‘ 𝑧 ) ‘ ( ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
248 |
233 245
|
fvco3d |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏 ‘ 𝑤 ) ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
249 |
248
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ∘ ( 𝑏 ‘ 𝑤 ) ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
250 |
242 247 249
|
3eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏 ‘ 𝑧 ) ‘ ( ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1 ‘ 𝑤 ) ) ) = ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) ) |
251 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
252 |
243
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1 ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑤 ) ) |
253 |
1 2 164 169 107 169 251 171 172 252
|
yon12 |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1 ‘ 𝑤 ) ) = ( ( 1 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑘 ) ) |
254 |
2 107 3 164 171 251 169 172
|
catlid |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1 ‘ 𝑤 ) ( 〈 𝑧 , 𝑤 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑘 ) = 𝑘 ) |
255 |
253 254
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1 ‘ 𝑤 ) ) = 𝑘 ) |
256 |
255
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑏 ‘ 𝑧 ) ‘ ( ( ( 𝑤 ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 𝑧 ) ‘ 𝑘 ) ‘ ( 1 ‘ 𝑤 ) ) ) = ( ( 𝑏 ‘ 𝑧 ) ‘ 𝑘 ) ) |
257 |
250 256
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( 𝑤 ( 2nd ‘ ℎ ) 𝑧 ) ‘ 𝑘 ) ‘ ( ( 𝑏 ‘ 𝑤 ) ‘ ( 1 ‘ 𝑤 ) ) ) = ( ( 𝑏 ‘ 𝑧 ) ‘ 𝑘 ) ) |
258 |
173 184 257
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝑏 ‘ 𝑧 ) ‘ 𝑘 ) ) |
259 |
163 258
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ) → ( ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) = ( ( 𝑏 ‘ 𝑧 ) ‘ 𝑘 ) ) |
260 |
259
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) = ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( 𝑏 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
261 |
152
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ∈ ( 〈 ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) 〉 ( 𝑂 Nat 𝑆 ) 〈 ( 1st ‘ ℎ ) , ( 2nd ‘ ℎ ) 〉 ) ) |
262 |
141 261 21 217 160
|
natcl |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
263 |
5 192 217 209 215
|
elsetchom |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ∈ ( ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ↔ ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) ) |
264 |
262 263
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) : ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ⟶ ( ( 1st ‘ ℎ ) ‘ 𝑧 ) ) |
265 |
264
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) = ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
266 |
226
|
feqmptd |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑏 ‘ 𝑧 ) = ( 𝑘 ∈ ( ( 1st ‘ ( ( 1st ‘ 𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↦ ( ( 𝑏 ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
267 |
260 265 266
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ‘ 𝑧 ) = ( 𝑏 ‘ 𝑧 ) ) |
268 |
153 157 267
|
eqfnfvd |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) → ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) = 𝑏 ) |
269 |
268
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ) = ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↦ 𝑏 ) ) |
270 |
|
mptresid |
⊢ ( I ↾ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) = ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↦ 𝑏 ) |
271 |
269 270
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑏 ∈ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ↦ ( ( ℎ 𝑁 𝑤 ) ‘ ( ( ℎ 𝑀 𝑤 ) ‘ 𝑏 ) ) ) = ( I ↾ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ) |
272 |
140 271
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑁 𝑤 ) ∘ ( ℎ 𝑀 𝑤 ) ) = ( I ↾ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ) |
273 |
|
fcof1o |
⊢ ( ( ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ( ℎ 𝑁 𝑤 ) : ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ⟶ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ∧ ( ( ( ℎ 𝑀 𝑤 ) ∘ ( ℎ 𝑁 𝑤 ) ) = ( I ↾ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ∧ ( ( ℎ 𝑁 𝑤 ) ∘ ( ℎ 𝑀 𝑤 ) ) = ( I ↾ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) ) ) → ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) –1-1-onto→ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ◡ ( ℎ 𝑀 𝑤 ) = ( ℎ 𝑁 𝑤 ) ) ) |
274 |
36 84 138 272 273
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) –1-1-onto→ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ◡ ( ℎ 𝑀 𝑤 ) = ( ℎ 𝑁 𝑤 ) ) ) |
275 |
|
eqcom |
⊢ ( ◡ ( ℎ 𝑀 𝑤 ) = ( ℎ 𝑁 𝑤 ) ↔ ( ℎ 𝑁 𝑤 ) = ◡ ( ℎ 𝑀 𝑤 ) ) |
276 |
275
|
anbi2i |
⊢ ( ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) –1-1-onto→ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ◡ ( ℎ 𝑀 𝑤 ) = ( ℎ 𝑁 𝑤 ) ) ↔ ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) –1-1-onto→ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ( ℎ 𝑁 𝑤 ) = ◡ ( ℎ 𝑀 𝑤 ) ) ) |
277 |
274 276
|
sylib |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) –1-1-onto→ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ( ℎ 𝑁 𝑤 ) = ◡ ( ℎ 𝑀 𝑤 ) ) ) |
278 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
279 |
|
relfunc |
⊢ Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) |
280 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) → ( 1st ‘ 𝑍 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd ‘ 𝑍 ) ) |
281 |
279 25 280
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd ‘ 𝑍 ) ) |
282 |
22 278 281
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) ) |
283 |
6 13
|
setcbas |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑇 ) ) |
284 |
283
|
feq3d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 ↔ ( 1st ‘ 𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
285 |
282 284
|
mpbird |
⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 ) |
286 |
285
|
fovrnda |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ∈ 𝑉 ) |
287 |
|
1st2ndbr |
⊢ ( ( Rel ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) → ( 1st ‘ 𝐸 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd ‘ 𝐸 ) ) |
288 |
279 26 287
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐸 ) ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ( 2nd ‘ 𝐸 ) ) |
289 |
22 278 288
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) ) |
290 |
283
|
feq3d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 ↔ ( 1st ‘ 𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
291 |
289 290
|
mpbird |
⊢ ( 𝜑 → ( 1st ‘ 𝐸 ) : ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ⟶ 𝑉 ) |
292 |
291
|
fovrnda |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∈ 𝑉 ) |
293 |
6 30 286 292 27
|
setcinv |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ℎ 𝑀 𝑤 ) ( ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ( ℎ 𝑁 𝑤 ) ↔ ( ( ℎ 𝑀 𝑤 ) : ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) –1-1-onto→ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ∧ ( ℎ 𝑁 𝑤 ) = ◡ ( ℎ 𝑀 𝑤 ) ) ) ) |
294 |
277 293
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ ( 𝑂 Func 𝑆 ) ∧ 𝑤 ∈ 𝐵 ) ) → ( ℎ 𝑀 𝑤 ) ( ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ( ℎ 𝑁 𝑤 ) ) |
295 |
294
|
ralrimivva |
⊢ ( 𝜑 → ∀ ℎ ∈ ( 𝑂 Func 𝑆 ) ∀ 𝑤 ∈ 𝐵 ( ℎ 𝑀 𝑤 ) ( ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ( ℎ 𝑁 𝑤 ) ) |
296 |
|
fveq2 |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( 𝑀 ‘ 𝑧 ) = ( 𝑀 ‘ 〈 ℎ , 𝑤 〉 ) ) |
297 |
|
df-ov |
⊢ ( ℎ 𝑀 𝑤 ) = ( 𝑀 ‘ 〈 ℎ , 𝑤 〉 ) |
298 |
296 297
|
eqtr4di |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( 𝑀 ‘ 𝑧 ) = ( ℎ 𝑀 𝑤 ) ) |
299 |
|
fveq2 |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑍 ) ‘ 〈 ℎ , 𝑤 〉 ) ) |
300 |
|
df-ov |
⊢ ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) = ( ( 1st ‘ 𝑍 ) ‘ 〈 ℎ , 𝑤 〉 ) |
301 |
299 300
|
eqtr4di |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) = ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ) |
302 |
|
fveq2 |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐸 ) ‘ 〈 ℎ , 𝑤 〉 ) ) |
303 |
|
df-ov |
⊢ ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) = ( ( 1st ‘ 𝐸 ) ‘ 〈 ℎ , 𝑤 〉 ) |
304 |
302 303
|
eqtr4di |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) = ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) |
305 |
301 304
|
oveq12d |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) ) = ( ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ) |
306 |
|
fveq2 |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 〈 ℎ , 𝑤 〉 ) ) |
307 |
|
df-ov |
⊢ ( ℎ 𝑁 𝑤 ) = ( 𝑁 ‘ 〈 ℎ , 𝑤 〉 ) |
308 |
306 307
|
eqtr4di |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( 𝑁 ‘ 𝑧 ) = ( ℎ 𝑁 𝑤 ) ) |
309 |
298 305 308
|
breq123d |
⊢ ( 𝑧 = 〈 ℎ , 𝑤 〉 → ( ( 𝑀 ‘ 𝑧 ) ( ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) ) ( 𝑁 ‘ 𝑧 ) ↔ ( ℎ 𝑀 𝑤 ) ( ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ( ℎ 𝑁 𝑤 ) ) ) |
310 |
309
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑀 ‘ 𝑧 ) ( ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) ) ( 𝑁 ‘ 𝑧 ) ↔ ∀ ℎ ∈ ( 𝑂 Func 𝑆 ) ∀ 𝑤 ∈ 𝐵 ( ℎ 𝑀 𝑤 ) ( ( ℎ ( 1st ‘ 𝑍 ) 𝑤 ) ( Inv ‘ 𝑇 ) ( ℎ ( 1st ‘ 𝐸 ) 𝑤 ) ) ( ℎ 𝑁 𝑤 ) ) |
311 |
295 310
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑀 ‘ 𝑧 ) ( ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) ) ( 𝑁 ‘ 𝑧 ) ) |
312 |
311
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ) → ( 𝑀 ‘ 𝑧 ) ( ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ( Inv ‘ 𝑇 ) ( ( 1st ‘ 𝐸 ) ‘ 𝑧 ) ) ( 𝑁 ‘ 𝑧 ) ) |
313 |
9 22 23 25 26 17 27 28 312
|
invfuc |
⊢ ( 𝜑 → 𝑀 ( 𝑍 𝐼 𝐸 ) ( 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↦ ( 𝑁 ‘ 𝑧 ) ) ) |
314 |
|
fvex |
⊢ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ V |
315 |
314
|
mptex |
⊢ ( 𝑢 ∈ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ∈ V |
316 |
18 315
|
fnmpoi |
⊢ 𝑁 Fn ( ( 𝑂 Func 𝑆 ) × 𝐵 ) |
317 |
|
dffn5 |
⊢ ( 𝑁 Fn ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↔ 𝑁 = ( 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↦ ( 𝑁 ‘ 𝑧 ) ) ) |
318 |
316 317
|
mpbi |
⊢ 𝑁 = ( 𝑧 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ↦ ( 𝑁 ‘ 𝑧 ) ) |
319 |
313 318
|
breqtrrdi |
⊢ ( 𝜑 → 𝑀 ( 𝑍 𝐼 𝐸 ) 𝑁 ) |