Metamath Proof Explorer


Theorem breqtrrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005)

Ref Expression
Hypotheses breqtrrdi.1 ( 𝜑𝐴 𝑅 𝐵 )
breqtrrdi.2 𝐶 = 𝐵
Assertion breqtrrdi ( 𝜑𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 breqtrrdi.1 ( 𝜑𝐴 𝑅 𝐵 )
2 breqtrrdi.2 𝐶 = 𝐵
3 2 eqcomi 𝐵 = 𝐶
4 1 3 breqtrdi ( 𝜑𝐴 𝑅 𝐶 )