Metamath Proof Explorer


Theorem yonffthlem

Description: Lemma for yonffth . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y 𝑌 = ( Yon ‘ 𝐶 )
yoneda.b 𝐵 = ( Base ‘ 𝐶 )
yoneda.1 1 = ( Id ‘ 𝐶 )
yoneda.o 𝑂 = ( oppCat ‘ 𝐶 )
yoneda.s 𝑆 = ( SetCat ‘ 𝑈 )
yoneda.t 𝑇 = ( SetCat ‘ 𝑉 )
yoneda.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
yoneda.h 𝐻 = ( HomF𝑄 )
yoneda.r 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 )
yoneda.e 𝐸 = ( 𝑂 evalF 𝑆 )
yoneda.z 𝑍 = ( 𝐻func ( ( ⟨ ( 1st𝑌 ) , tpos ( 2nd𝑌 ) ⟩ ∘func ( 𝑄 2ndF 𝑂 ) ) ⟨,⟩F ( 𝑄 1stF 𝑂 ) ) )
yoneda.c ( 𝜑𝐶 ∈ Cat )
yoneda.w ( 𝜑𝑉𝑊 )
yoneda.u ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
yoneda.v ( 𝜑 → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
yoneda.m 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎𝑥 ) ‘ ( 1𝑥 ) ) ) )
yonedainv.i 𝐼 = ( Inv ‘ 𝑅 )
yonedainv.n 𝑁 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑢 ∈ ( ( 1st𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
Assertion yonffthlem ( 𝜑𝑌 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 yoneda.y 𝑌 = ( Yon ‘ 𝐶 )
2 yoneda.b 𝐵 = ( Base ‘ 𝐶 )
3 yoneda.1 1 = ( Id ‘ 𝐶 )
4 yoneda.o 𝑂 = ( oppCat ‘ 𝐶 )
5 yoneda.s 𝑆 = ( SetCat ‘ 𝑈 )
6 yoneda.t 𝑇 = ( SetCat ‘ 𝑉 )
7 yoneda.q 𝑄 = ( 𝑂 FuncCat 𝑆 )
8 yoneda.h 𝐻 = ( HomF𝑄 )
9 yoneda.r 𝑅 = ( ( 𝑄 ×c 𝑂 ) FuncCat 𝑇 )
10 yoneda.e 𝐸 = ( 𝑂 evalF 𝑆 )
11 yoneda.z 𝑍 = ( 𝐻func ( ( ⟨ ( 1st𝑌 ) , tpos ( 2nd𝑌 ) ⟩ ∘func ( 𝑄 2ndF 𝑂 ) ) ⟨,⟩F ( 𝑄 1stF 𝑂 ) ) )
12 yoneda.c ( 𝜑𝐶 ∈ Cat )
13 yoneda.w ( 𝜑𝑉𝑊 )
14 yoneda.u ( 𝜑 → ran ( Homf𝐶 ) ⊆ 𝑈 )
15 yoneda.v ( 𝜑 → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
16 yoneda.m 𝑀 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑎 ∈ ( ( ( 1st𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎𝑥 ) ‘ ( 1𝑥 ) ) ) )
17 yonedainv.i 𝐼 = ( Inv ‘ 𝑅 )
18 yonedainv.n 𝑁 = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥𝐵 ↦ ( 𝑢 ∈ ( ( 1st𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) )
19 relfunc Rel ( 𝐶 Func 𝑄 )
20 15 unssbd ( 𝜑𝑈𝑉 )
21 13 20 ssexd ( 𝜑𝑈 ∈ V )
22 1 12 4 5 7 21 14 yoncl ( 𝜑𝑌 ∈ ( 𝐶 Func 𝑄 ) )
23 1st2nd ( ( Rel ( 𝐶 Func 𝑄 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) → 𝑌 = ⟨ ( 1st𝑌 ) , ( 2nd𝑌 ) ⟩ )
24 19 22 23 sylancr ( 𝜑𝑌 = ⟨ ( 1st𝑌 ) , ( 2nd𝑌 ) ⟩ )
25 1st2ndbr ( ( Rel ( 𝐶 Func 𝑄 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝑄 ) ) → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
26 19 22 25 sylancr ( 𝜑 → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
27 fveq2 ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( 𝑁𝑣 ) = ( 𝑁 ‘ ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ ) )
28 df-ov ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) = ( 𝑁 ‘ ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ )
29 27 28 eqtr4di ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( 𝑁𝑣 ) = ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) )
30 fveq2 ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( ( 1st𝐸 ) ‘ 𝑣 ) = ( ( 1st𝐸 ) ‘ ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ ) )
31 df-ov ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) = ( ( 1st𝐸 ) ‘ ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ )
32 30 31 eqtr4di ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( ( 1st𝐸 ) ‘ 𝑣 ) = ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) )
33 fveq2 ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( ( 1st𝑍 ) ‘ 𝑣 ) = ( ( 1st𝑍 ) ‘ ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ ) )
34 df-ov ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) = ( ( 1st𝑍 ) ‘ ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ )
35 33 34 eqtr4di ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( ( 1st𝑍 ) ‘ 𝑣 ) = ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) )
36 32 35 oveq12d ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( ( ( 1st𝐸 ) ‘ 𝑣 ) ( Iso ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ 𝑣 ) ) = ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) ) )
37 29 36 eleq12d ( 𝑣 = ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ → ( ( 𝑁𝑣 ) ∈ ( ( ( 1st𝐸 ) ‘ 𝑣 ) ( Iso ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ 𝑣 ) ) ↔ ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ∈ ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) ) ) )
38 9 fucbas ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) = ( Base ‘ 𝑅 )
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yonedalem1 ( 𝜑 → ( 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ∧ 𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) ) )
40 39 simpld ( 𝜑𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) )
41 funcrcl ( 𝑍 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) → ( ( 𝑄 ×c 𝑂 ) ∈ Cat ∧ 𝑇 ∈ Cat ) )
42 40 41 syl ( 𝜑 → ( ( 𝑄 ×c 𝑂 ) ∈ Cat ∧ 𝑇 ∈ Cat ) )
43 42 simpld ( 𝜑 → ( 𝑄 ×c 𝑂 ) ∈ Cat )
44 42 simprd ( 𝜑𝑇 ∈ Cat )
45 9 43 44 fuccat ( 𝜑𝑅 ∈ Cat )
46 39 simprd ( 𝜑𝐸 ∈ ( ( 𝑄 ×c 𝑂 ) Func 𝑇 ) )
47 eqid ( Iso ‘ 𝑅 ) = ( Iso ‘ 𝑅 )
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 yonedainv ( 𝜑𝑀 ( 𝑍 𝐼 𝐸 ) 𝑁 )
49 38 17 45 40 46 47 48 inviso2 ( 𝜑𝑁 ∈ ( 𝐸 ( Iso ‘ 𝑅 ) 𝑍 ) )
50 eqid ( 𝑄 ×c 𝑂 ) = ( 𝑄 ×c 𝑂 )
51 7 fucbas ( 𝑂 Func 𝑆 ) = ( Base ‘ 𝑄 )
52 4 2 oppcbas 𝐵 = ( Base ‘ 𝑂 )
53 50 51 52 xpcbas ( ( 𝑂 Func 𝑆 ) × 𝐵 ) = ( Base ‘ ( 𝑄 ×c 𝑂 ) )
54 eqid ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) = ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 )
55 eqid ( Iso ‘ 𝑇 ) = ( Iso ‘ 𝑇 )
56 9 53 54 46 40 47 55 fuciso ( 𝜑 → ( 𝑁 ∈ ( 𝐸 ( Iso ‘ 𝑅 ) 𝑍 ) ↔ ( 𝑁 ∈ ( 𝐸 ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) 𝑍 ) ∧ ∀ 𝑣 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑁𝑣 ) ∈ ( ( ( 1st𝐸 ) ‘ 𝑣 ) ( Iso ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ 𝑣 ) ) ) ) )
57 49 56 mpbid ( 𝜑 → ( 𝑁 ∈ ( 𝐸 ( ( 𝑄 ×c 𝑂 ) Nat 𝑇 ) 𝑍 ) ∧ ∀ 𝑣 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑁𝑣 ) ∈ ( ( ( 1st𝐸 ) ‘ 𝑣 ) ( Iso ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ 𝑣 ) ) ) )
58 57 simprd ( 𝜑 → ∀ 𝑣 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑁𝑣 ) ∈ ( ( ( 1st𝐸 ) ‘ 𝑣 ) ( Iso ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ 𝑣 ) ) )
59 58 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ∀ 𝑣 ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) ( 𝑁𝑣 ) ∈ ( ( ( 1st𝐸 ) ‘ 𝑣 ) ( Iso ‘ 𝑇 ) ( ( 1st𝑍 ) ‘ 𝑣 ) ) )
60 2 51 26 funcf1 ( 𝜑 → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) )
61 60 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) )
62 simprr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑤𝐵 )
63 61 62 ffvelrnd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( 1st𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) )
64 simprl ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑧𝐵 )
65 63 64 opelxpd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ⟨ ( ( 1st𝑌 ) ‘ 𝑤 ) , 𝑧 ⟩ ∈ ( ( 𝑂 Func 𝑆 ) × 𝐵 ) )
66 37 59 65 rspcdva ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ∈ ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) ) )
67 4 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
68 12 67 syl ( 𝜑𝑂 ∈ Cat )
69 68 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑂 ∈ Cat )
70 5 setccat ( 𝑈 ∈ V → 𝑆 ∈ Cat )
71 21 70 syl ( 𝜑𝑆 ∈ Cat )
72 71 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑆 ∈ Cat )
73 10 69 72 52 63 64 evlf1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) = ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) )
74 12 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝐶 ∈ Cat )
75 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
76 1 2 74 62 75 64 yon11 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
77 73 76 eqtrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
78 13 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑉𝑊 )
79 14 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
80 15 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
81 1 2 3 4 5 6 7 8 9 10 11 74 78 79 80 63 64 yonedalem21 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) = ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
82 77 81 oveq12d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝐸 ) 𝑧 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑤 ) ( 1st𝑍 ) 𝑧 ) ) = ( ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ) )
83 66 82 eleqtrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ∈ ( ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ) )
84 20 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑈𝑉 )
85 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
86 relfunc Rel ( 𝑂 Func 𝑆 )
87 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ( ( 1st𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
88 86 63 87 sylancr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
89 52 85 88 funcf1 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
90 89 64 ffvelrnd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ ( Base ‘ 𝑆 ) )
91 5 21 setcbas ( 𝜑𝑈 = ( Base ‘ 𝑆 ) )
92 91 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑈 = ( Base ‘ 𝑆 ) )
93 90 92 eleqtrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ∈ 𝑈 )
94 76 93 eqeltrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ∈ 𝑈 )
95 84 94 sseldd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ∈ 𝑉 )
96 eqid ( Homf𝑄 ) = ( Homf𝑄 )
97 eqid ( 𝑂 Nat 𝑆 ) = ( 𝑂 Nat 𝑆 )
98 7 97 fuchom ( 𝑂 Nat 𝑆 ) = ( Hom ‘ 𝑄 )
99 61 64 ffvelrnd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( 1st𝑌 ) ‘ 𝑧 ) ∈ ( 𝑂 Func 𝑆 ) )
100 96 51 98 99 63 homfval ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( Homf𝑄 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) = ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
101 15 unssad ( 𝜑 → ran ( Homf𝑄 ) ⊆ 𝑉 )
102 101 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ran ( Homf𝑄 ) ⊆ 𝑉 )
103 96 51 homffn ( Homf𝑄 ) Fn ( ( 𝑂 Func 𝑆 ) × ( 𝑂 Func 𝑆 ) )
104 fnovrn ( ( ( Homf𝑄 ) Fn ( ( 𝑂 Func 𝑆 ) × ( 𝑂 Func 𝑆 ) ) ∧ ( ( 1st𝑌 ) ‘ 𝑧 ) ∈ ( 𝑂 Func 𝑆 ) ∧ ( ( 1st𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( Homf𝑄 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ∈ ran ( Homf𝑄 ) )
105 103 99 63 104 mp3an2i ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( Homf𝑄 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ∈ ran ( Homf𝑄 ) )
106 102 105 sseldd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( Homf𝑄 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ∈ 𝑉 )
107 100 106 eqeltrrd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ∈ 𝑉 )
108 6 78 95 107 55 setciso ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ∈ ( ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ( Iso ‘ 𝑇 ) ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ) ↔ ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ) )
109 83 108 mpbid ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
110 74 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝐶 ∈ Cat )
111 110 adantr ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → 𝐶 ∈ Cat )
112 64 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑧𝐵 )
113 112 adantr ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → 𝑧𝐵 )
114 simpr ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → 𝑦𝐵 )
115 1 2 111 113 75 114 yon11 ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
116 115 eqcomd ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) )
117 111 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝐶 ∈ Cat )
118 62 ad3antrrr ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑤𝐵 )
119 113 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑧𝐵 )
120 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
121 114 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑦𝐵 )
122 simpr ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) )
123 simpllr ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) )
124 1 2 117 118 75 119 120 121 122 123 yon12 ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑦 ) ‘ 𝑔 ) ‘ ) = ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) )
125 1 2 117 119 75 118 120 121 123 122 yon2 ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ‘ 𝑔 ) = ( ( ⟨ 𝑦 , 𝑧 ⟩ ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) )
126 124 125 eqtr4d ( ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑦 ) ‘ 𝑔 ) ‘ ) = ( ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ‘ 𝑔 ) )
127 116 126 mpteq12dva ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑦 ) ‘ 𝑔 ) ‘ ) ) = ( 𝑔 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ↦ ( ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ‘ 𝑔 ) ) )
128 26 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) )
129 2 75 98 128 64 62 funcf2 ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 ( 2nd𝑌 ) 𝑤 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
130 129 ffvelrnda ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ∈ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
131 97 130 nat1st2nd ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ) )
132 131 adantr ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ∈ ( ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ⟩ ( 𝑂 Nat 𝑆 ) ⟨ ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) , ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ⟩ ) )
133 eqid ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 )
134 97 132 52 133 114 natcl ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑦 ) ) )
135 21 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → 𝑈 ∈ V )
136 135 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → 𝑈 ∈ V )
137 60 ad2antrr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st𝑌 ) : 𝐵 ⟶ ( 𝑂 Func 𝑆 ) )
138 137 112 ffvelrnd ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st𝑌 ) ‘ 𝑧 ) ∈ ( 𝑂 Func 𝑆 ) )
139 1st2ndbr ( ( Rel ( 𝑂 Func 𝑆 ) ∧ ( ( 1st𝑌 ) ‘ 𝑧 ) ∈ ( 𝑂 Func 𝑆 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) )
140 86 138 139 sylancr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ( 𝑂 Func 𝑆 ) ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) )
141 52 85 140 funcf1 ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
142 141 ffvelrnda ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
143 92 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → 𝑈 = ( Base ‘ 𝑆 ) )
144 142 143 eleqtrrd ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ∈ 𝑈 )
145 89 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) : 𝐵 ⟶ ( Base ‘ 𝑆 ) )
146 145 ffvelrnda ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
147 146 143 eleqtrrd ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑦 ) ∈ 𝑈 )
148 5 136 133 144 147 elsetchom ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ∈ ( ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ( Hom ‘ 𝑆 ) ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑦 ) ) ↔ ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑦 ) ) )
149 134 148 mpbid ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) : ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ⟶ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑦 ) )
150 149 feqmptd ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) = ( 𝑔 ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑧 ) ) ‘ 𝑦 ) ↦ ( ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ‘ 𝑔 ) ) )
151 127 150 eqtr4d ( ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ∧ 𝑦𝐵 ) → ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑦 ) ‘ 𝑔 ) ‘ ) ) = ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) )
152 151 mpteq2dva ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑦 ) ‘ 𝑔 ) ‘ ) ) ) = ( 𝑦𝐵 ↦ ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ) )
153 78 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → 𝑉𝑊 )
154 79 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ran ( Homf𝐶 ) ⊆ 𝑈 )
155 80 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ran ( Homf𝑄 ) ∪ 𝑈 ) ⊆ 𝑉 )
156 63 adantr ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 1st𝑌 ) ‘ 𝑤 ) ∈ ( 𝑂 Func 𝑆 ) )
157 76 eleq2d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) ↔ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) )
158 157 biimpar ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ∈ ( ( 1st ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) ‘ 𝑧 ) )
159 1 2 3 4 5 6 7 8 9 10 11 110 153 154 155 156 112 18 158 yonedalem4a ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ‘ ) = ( 𝑦𝐵 ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↦ ( ( ( 𝑧 ( 2nd ‘ ( ( 1st𝑌 ) ‘ 𝑤 ) ) 𝑦 ) ‘ 𝑔 ) ‘ ) ) ) )
160 97 131 52 natfn ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) Fn 𝐵 )
161 dffn5 ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) Fn 𝐵 ↔ ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) = ( 𝑦𝐵 ↦ ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ) )
162 160 161 sylib ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) = ( 𝑦𝐵 ↦ ( ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ‘ 𝑦 ) ) )
163 152 159 162 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) ∧ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) → ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ‘ ) = ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) )
164 163 mpteq2dva ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ‘ ) ) = ( ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ) )
165 f1of ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
166 109 165 syl ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ⟶ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
167 166 feqmptd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) = ( ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) ‘ ) ) )
168 129 feqmptd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 ( 2nd𝑌 ) 𝑤 ) = ( ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ↦ ( ( 𝑧 ( 2nd𝑌 ) 𝑤 ) ‘ ) ) )
169 164 167 168 3eqtr4d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) = ( 𝑧 ( 2nd𝑌 ) 𝑤 ) )
170 169 f1oeq1d ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( ( ( ( 1st𝑌 ) ‘ 𝑤 ) 𝑁 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ↔ ( 𝑧 ( 2nd𝑌 ) 𝑤 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ) )
171 109 170 mpbid ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 ( 2nd𝑌 ) 𝑤 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
172 171 ralrimivva ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 ( 2nd𝑌 ) 𝑤 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) )
173 2 75 98 isffth2 ( ( 1st𝑌 ) ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ( 2nd𝑌 ) ↔ ( ( 1st𝑌 ) ( 𝐶 Func 𝑄 ) ( 2nd𝑌 ) ∧ ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 ( 2nd𝑌 ) 𝑤 ) : ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) –1-1-onto→ ( ( ( 1st𝑌 ) ‘ 𝑧 ) ( 𝑂 Nat 𝑆 ) ( ( 1st𝑌 ) ‘ 𝑤 ) ) ) )
174 26 172 173 sylanbrc ( 𝜑 → ( 1st𝑌 ) ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ( 2nd𝑌 ) )
175 df-br ( ( 1st𝑌 ) ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ( 2nd𝑌 ) ↔ ⟨ ( 1st𝑌 ) , ( 2nd𝑌 ) ⟩ ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) )
176 174 175 sylib ( 𝜑 → ⟨ ( 1st𝑌 ) , ( 2nd𝑌 ) ⟩ ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) )
177 24 176 eqeltrd ( 𝜑𝑌 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) )