Step |
Hyp |
Ref |
Expression |
1 |
|
yonffth.y |
⊢ 𝑌 = ( Yon ‘ 𝐶 ) |
2 |
|
yonffth.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
3 |
|
yonffth.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
4 |
|
yonffth.q |
⊢ 𝑄 = ( 𝑂 FuncCat 𝑆 ) |
5 |
|
yonffth.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
yonffth.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
7 |
|
yonffth.h |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ 𝑈 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
10 |
|
eqid |
⊢ ( SetCat ‘ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) = ( SetCat ‘ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) |
11 |
|
eqid |
⊢ ( HomF ‘ 𝑄 ) = ( HomF ‘ 𝑄 ) |
12 |
|
eqid |
⊢ ( ( 𝑄 ×c 𝑂 ) FuncCat ( SetCat ‘ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) ) = ( ( 𝑄 ×c 𝑂 ) FuncCat ( SetCat ‘ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) ) |
13 |
|
eqid |
⊢ ( 𝑂 evalF 𝑆 ) = ( 𝑂 evalF 𝑆 ) |
14 |
|
eqid |
⊢ ( ( HomF ‘ 𝑄 ) ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) = ( ( HomF ‘ 𝑄 ) ∘func ( ( 〈 ( 1st ‘ 𝑌 ) , tpos ( 2nd ‘ 𝑌 ) 〉 ∘func ( 𝑄 2ndF 𝑂 ) ) 〈,〉F ( 𝑄 1stF 𝑂 ) ) ) |
15 |
|
fvex |
⊢ ( Homf ‘ 𝑄 ) ∈ V |
16 |
15
|
rnex |
⊢ ran ( Homf ‘ 𝑄 ) ∈ V |
17 |
|
unexg |
⊢ ( ( ran ( Homf ‘ 𝑄 ) ∈ V ∧ 𝑈 ∈ 𝑉 ) → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ∈ V ) |
18 |
16 6 17
|
sylancr |
⊢ ( 𝜑 → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ∈ V ) |
19 |
|
ssidd |
⊢ ( 𝜑 → ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ⊆ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) |
20 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎 ‘ 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑎 ∈ ( ( ( 1st ‘ 𝑌 ) ‘ 𝑥 ) ( 𝑂 Nat 𝑆 ) 𝑓 ) ↦ ( ( 𝑎 ‘ 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
21 |
|
eqid |
⊢ ( Inv ‘ ( ( 𝑄 ×c 𝑂 ) FuncCat ( SetCat ‘ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) ) ) = ( Inv ‘ ( ( 𝑄 ×c 𝑂 ) FuncCat ( SetCat ‘ ( ran ( Homf ‘ 𝑄 ) ∪ 𝑈 ) ) ) ) |
22 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑢 ∈ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ) = ( 𝑓 ∈ ( 𝑂 Func 𝑆 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑢 ∈ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ↦ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ↦ ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑔 ) ‘ 𝑢 ) ) ) ) ) |
23 |
1 8 9 2 3 10 4 11 12 13 14 5 18 7 19 20 21 22
|
yonffthlem |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐶 Full 𝑄 ) ∩ ( 𝐶 Faith 𝑄 ) ) ) |