Metamath Proof Explorer


Theorem brab2a

Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses brab2a.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
brab2a.2 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) }
Assertion brab2a ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 brab2a.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
2 brab2a.2 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) }
3 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } ⊆ ( 𝐶 × 𝐷 )
4 2 3 eqsstri 𝑅 ⊆ ( 𝐶 × 𝐷 )
5 4 brel ( 𝐴 𝑅 𝐵 → ( 𝐴𝐶𝐵𝐷 ) )
6 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
7 2 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } )
8 6 7 bitri ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } )
9 1 opelopab2a ( ( 𝐴𝐶𝐵𝐷 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐶𝑦𝐷 ) ∧ 𝜑 ) } ↔ 𝜓 ) )
10 8 9 bitrid ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝑅 𝐵𝜓 ) )
11 5 10 biadanii ( 𝐴 𝑅 𝐵 ↔ ( ( 𝐴𝐶𝐵𝐷 ) ∧ 𝜓 ) )