Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upcic.b | |- B = ( Base ` D ) |
|
upcic.c | |- C = ( Base ` E ) |
||
upcic.h | |- H = ( Hom ` D ) |
||
upcic.j | |- J = ( Hom ` E ) |
||
upcic.o | |- O = ( comp ` E ) |
||
upcic.f | |- ( ph -> F ( D Func E ) G ) |
||
upcic.x | |- ( ph -> X e. B ) |
||
upcic.y | |- ( ph -> Y e. B ) |
||
upcic.z | |- ( ph -> Z e. C ) |
||
upcic.m | |- ( ph -> M e. ( Z J ( F ` X ) ) ) |
||
upcic.1 | |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
||
upcic.n | |- ( ph -> N e. ( Z J ( F ` Y ) ) ) |
||
upcic.2 | |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v ) g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) |
||
Assertion | upcic | |- ( ph -> X ( ~=c ` D ) Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upcic.b | |- B = ( Base ` D ) |
|
2 | upcic.c | |- C = ( Base ` E ) |
|
3 | upcic.h | |- H = ( Hom ` D ) |
|
4 | upcic.j | |- J = ( Hom ` E ) |
|
5 | upcic.o | |- O = ( comp ` E ) |
|
6 | upcic.f | |- ( ph -> F ( D Func E ) G ) |
|
7 | upcic.x | |- ( ph -> X e. B ) |
|
8 | upcic.y | |- ( ph -> Y e. B ) |
|
9 | upcic.z | |- ( ph -> Z e. C ) |
|
10 | upcic.m | |- ( ph -> M e. ( Z J ( F ` X ) ) ) |
|
11 | upcic.1 | |- ( ph -> A. w e. B A. f e. ( Z J ( F ` w ) ) E! k e. ( X H w ) f = ( ( ( X G w ) ` k ) ( <. Z , ( F ` X ) >. O ( F ` w ) ) M ) ) |
|
12 | upcic.n | |- ( ph -> N e. ( Z J ( F ` Y ) ) ) |
|
13 | upcic.2 | |- ( ph -> A. v e. B A. g e. ( Z J ( F ` v ) ) E! l e. ( Y H v ) g = ( ( ( Y G v ) ` l ) ( <. Z , ( F ` Y ) >. O ( F ` v ) ) N ) ) |
|
14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | upciclem4 | |- ( ph -> ( X ( ~=c ` D ) Y /\ E. r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. Z , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
15 | 14 | simpld | |- ( ph -> X ( ~=c ` D ) Y ) |