| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upcic.b |
|
| 2 |
|
upcic.c |
|
| 3 |
|
upcic.h |
|
| 4 |
|
upcic.j |
|
| 5 |
|
upcic.o |
|
| 6 |
|
upcic.f |
|
| 7 |
|
upcic.x |
|
| 8 |
|
upcic.y |
|
| 9 |
|
upcic.z |
|
| 10 |
|
upcic.m |
|
| 11 |
|
upcic.1 |
|
| 12 |
|
upeu2.i |
|
| 13 |
|
upeu2.k |
|
| 14 |
|
upeu2.n |
|
| 15 |
6
|
funcrcl3 |
|
| 16 |
1 2 6
|
funcf1 |
|
| 17 |
16 7
|
ffvelcdmd |
|
| 18 |
16 8
|
ffvelcdmd |
|
| 19 |
1 3 4 6 7 8
|
funcf2 |
|
| 20 |
6
|
funcrcl2 |
|
| 21 |
1 3 12 20 7 8
|
isohom |
|
| 22 |
21 13
|
sseldd |
|
| 23 |
19 22
|
ffvelcdmd |
|
| 24 |
2 4 5 15 9 17 18 10 23
|
catcocl |
|
| 25 |
14 24
|
eqeltrd |
|
| 26 |
11
|
adantr |
|
| 27 |
|
simprl |
|
| 28 |
|
simprr |
|
| 29 |
26 27 28
|
upciclem1 |
|
| 30 |
|
eqid |
|
| 31 |
20
|
ad2antrr |
|
| 32 |
7
|
ad2antrr |
|
| 33 |
8
|
ad2antrr |
|
| 34 |
27
|
adantr |
|
| 35 |
22
|
ad2antrr |
|
| 36 |
|
simpr |
|
| 37 |
1 3 30 31 32 33 34 35 36
|
catcocl |
|
| 38 |
20
|
ad2antrr |
|
| 39 |
7
|
ad2antrr |
|
| 40 |
8
|
ad2antrr |
|
| 41 |
27
|
adantr |
|
| 42 |
13
|
ad2antrr |
|
| 43 |
|
simpr |
|
| 44 |
1 3 30 12 38 39 40 41 42 43
|
upeu2lem |
|
| 45 |
|
simprr |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
oveq1d |
|
| 48 |
6
|
ad2antrr |
|
| 49 |
7
|
ad2antrr |
|
| 50 |
8
|
ad2antrr |
|
| 51 |
27
|
adantr |
|
| 52 |
9
|
ad2antrr |
|
| 53 |
10
|
ad2antrr |
|
| 54 |
22
|
ad2antrr |
|
| 55 |
|
simprl |
|
| 56 |
14
|
ad2antrr |
|
| 57 |
1 2 3 4 5 48 49 50 51 52 53 30 54 55 56
|
upciclem2 |
|
| 58 |
47 57
|
eqtrd |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
37 44 59
|
reuxfr1dd |
|
| 61 |
29 60
|
mpbid |
|
| 62 |
61
|
ralrimivva |
|
| 63 |
25 62
|
jca |
|