Step |
Hyp |
Ref |
Expression |
1 |
|
upeu2lem.b |
|
2 |
|
upeu2lem.h |
|
3 |
|
upeu2lem.o |
|
4 |
|
upeu2lem.i |
|
5 |
|
upeu2lem.c |
|
6 |
|
upeu2lem.x |
|
7 |
|
upeu2lem.y |
|
8 |
|
upeu2lem.z |
|
9 |
|
upeu2lem.f |
|
10 |
|
upeu2lem.g |
|
11 |
1 2 4 5 7 6
|
isohom |
|
12 |
|
eqid |
|
13 |
1 12 5 6 7 4
|
invf |
|
14 |
13 9
|
ffvelcdmd |
|
15 |
11 14
|
sseldd |
|
16 |
1 2 3 5 7 6 8 15 10
|
catcocl |
|
17 |
|
oveq1 |
|
18 |
17
|
adantl |
|
19 |
5
|
adantr |
|
20 |
7
|
adantr |
|
21 |
6
|
adantr |
|
22 |
15
|
adantr |
|
23 |
1 2 4 5 6 7
|
isohom |
|
24 |
23 9
|
sseldd |
|
25 |
24
|
adantr |
|
26 |
8
|
adantr |
|
27 |
|
simpr |
|
28 |
1 2 3 19 20 21 20 22 25 26 27
|
catass |
|
29 |
9
|
adantr |
|
30 |
|
eqid |
|
31 |
3
|
oveqi |
|
32 |
1 4 12 19 21 20 29 30 31
|
isocoinvid |
|
33 |
32
|
oveq2d |
|
34 |
1 2 30 19 20 3 26 27
|
catrid |
|
35 |
28 33 34
|
3eqtrd |
|
36 |
35
|
adantr |
|
37 |
18 36
|
eqtr2d |
|
38 |
|
oveq1 |
|
39 |
38
|
adantl |
|
40 |
10
|
adantr |
|
41 |
1 2 3 19 21 20 21 25 22 26 40
|
catass |
|
42 |
3
|
oveqi |
|
43 |
1 4 12 19 21 20 29 30 42
|
invcoisoid |
|
44 |
43
|
oveq2d |
|
45 |
1 2 30 19 21 3 26 40
|
catrid |
|
46 |
41 44 45
|
3eqtrd |
|
47 |
46
|
adantr |
|
48 |
39 47
|
eqtr2d |
|
49 |
37 48
|
impbida |
|
50 |
49
|
ralrimiva |
|
51 |
|
reu6i |
|
52 |
16 50 51
|
syl2anc |
|