Metamath Proof Explorer


Theorem sectfn

Description: The function value of the function returning the sections of a category is a function over the Cartesian square of the base set of the category. (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Assertion sectfn C Cat Sect C Fn Base C × Base C

Proof

Step Hyp Ref Expression
1 eqid x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x = x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x
2 ovex x Hom C y V
3 ovex y Hom C x V
4 2 3 xpex x Hom C y × y Hom C x V
5 opabssxp f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x x Hom C y × y Hom C x
6 4 5 ssexi f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x V
7 1 6 fnmpoi x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x Fn Base C × Base C
8 eqid Base C = Base C
9 eqid Hom C = Hom C
10 eqid comp C = comp C
11 eqid Id C = Id C
12 eqid Sect C = Sect C
13 id C Cat C Cat
14 8 9 10 11 12 13 sectffval C Cat Sect C = x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x
15 14 fneq1d C Cat Sect C Fn Base C × Base C x Base C , y Base C f g | f x Hom C y g y Hom C x g x y comp C x f = Id C x Fn Base C × Base C
16 7 15 mpbiri C Cat Sect C Fn Base C × Base C