| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) |
| 2 |
|
ovex |
|- ( x ( Hom ` C ) y ) e. _V |
| 3 |
|
ovex |
|- ( y ( Hom ` C ) x ) e. _V |
| 4 |
2 3
|
xpex |
|- ( ( x ( Hom ` C ) y ) X. ( y ( Hom ` C ) x ) ) e. _V |
| 5 |
|
opabssxp |
|- { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } C_ ( ( x ( Hom ` C ) y ) X. ( y ( Hom ` C ) x ) ) |
| 6 |
4 5
|
ssexi |
|- { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } e. _V |
| 7 |
1 6
|
fnmpoi |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 10 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 11 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 12 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 13 |
|
id |
|- ( C e. Cat -> C e. Cat ) |
| 14 |
8 9 10 11 12 13
|
sectffval |
|- ( C e. Cat -> ( Sect ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) ) |
| 15 |
14
|
fneq1d |
|- ( C e. Cat -> ( ( Sect ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> { <. f , g >. | ( ( f e. ( x ( Hom ` C ) y ) /\ g e. ( y ( Hom ` C ) x ) ) /\ ( g ( <. x , y >. ( comp ` C ) x ) f ) = ( ( Id ` C ) ` x ) ) } ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 16 |
7 15
|
mpbiri |
|- ( C e. Cat -> ( Sect ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |