| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) |
| 2 |
|
ovex |
⊢ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V |
| 3 |
|
ovex |
⊢ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ∈ V |
| 4 |
2 3
|
xpex |
⊢ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∈ V |
| 5 |
|
opabssxp |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ⊆ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) × ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 6 |
4 5
|
ssexi |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ∈ V |
| 7 |
1 6
|
fnmpoi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 11 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
| 12 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
| 13 |
|
id |
⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) |
| 14 |
8 9 10 11 12 13
|
sectffval |
⊢ ( 𝐶 ∈ Cat → ( Sect ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) ) |
| 15 |
14
|
fneq1d |
⊢ ( 𝐶 ∈ Cat → ( ( Sect ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ∧ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) } ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 16 |
7 15
|
mpbiri |
⊢ ( 𝐶 ∈ Cat → ( Sect ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |