Metamath Proof Explorer


Theorem invfn

Description: The function value of the function returning the inverses of a category is a function over the Cartesian square of the base set of the category. Simplifies isofn (see isofnALT ). (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Assertion invfn C Cat Inv C Fn Base C × Base C

Proof

Step Hyp Ref Expression
1 ovex x Sect C y V
2 1 inex1 x Sect C y y Sect C x -1 V
3 2 a1i C Cat x Base C y Base C x Sect C y y Sect C x -1 V
4 3 ralrimivva C Cat x Base C y Base C x Sect C y y Sect C x -1 V
5 eqid x Base C , y Base C x Sect C y y Sect C x -1 = x Base C , y Base C x Sect C y y Sect C x -1
6 5 fnmpo x Base C y Base C x Sect C y y Sect C x -1 V x Base C , y Base C x Sect C y y Sect C x -1 Fn Base C × Base C
7 4 6 syl C Cat x Base C , y Base C x Sect C y y Sect C x -1 Fn Base C × Base C
8 df-inv Inv = c Cat x Base c , y Base c x Sect c y y Sect c x -1
9 fveq2 c = C Base c = Base C
10 fveq2 c = C Sect c = Sect C
11 10 oveqd c = C x Sect c y = x Sect C y
12 10 oveqd c = C y Sect c x = y Sect C x
13 12 cnveqd c = C y Sect c x -1 = y Sect C x -1
14 11 13 ineq12d c = C x Sect c y y Sect c x -1 = x Sect C y y Sect C x -1
15 9 9 14 mpoeq123dv c = C x Base c , y Base c x Sect c y y Sect c x -1 = x Base C , y Base C x Sect C y y Sect C x -1
16 id C Cat C Cat
17 fvex Base C V
18 17 17 pm3.2i Base C V Base C V
19 mpoexga Base C V Base C V x Base C , y Base C x Sect C y y Sect C x -1 V
20 18 19 mp1i C Cat x Base C , y Base C x Sect C y y Sect C x -1 V
21 8 15 16 20 fvmptd3 C Cat Inv C = x Base C , y Base C x Sect C y y Sect C x -1
22 21 fneq1d C Cat Inv C Fn Base C × Base C x Base C , y Base C x Sect C y y Sect C x -1 Fn Base C × Base C
23 7 22 mpbird C Cat Inv C Fn Base C × Base C