Metamath Proof Explorer


Theorem isofnALT

Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isofnALT C Cat Iso C Fn Base C × Base C

Proof

Step Hyp Ref Expression
1 dmexg x V dom x V
2 1 adantl C Cat x V dom x V
3 2 ralrimiva C Cat x V dom x V
4 eqid x V dom x = x V dom x
5 4 fnmpt x V dom x V x V dom x Fn V
6 3 5 syl C Cat x V dom x Fn V
7 invfn C Cat Inv C Fn Base C × Base C
8 ssv ran Inv C V
9 8 a1i C Cat ran Inv C V
10 fnco x V dom x Fn V Inv C Fn Base C × Base C ran Inv C V x V dom x Inv C Fn Base C × Base C
11 6 7 9 10 syl3anc C Cat x V dom x Inv C Fn Base C × Base C
12 isofval C Cat Iso C = x V dom x Inv C
13 12 fneq1d C Cat Iso C Fn Base C × Base C x V dom x Inv C Fn Base C × Base C
14 11 13 mpbird C Cat Iso C Fn Base C × Base C