Metamath Proof Explorer


Theorem invf

Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
isoval.n I=IsoC
Assertion invf φXNY:XIYYIX

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 isoval.n I=IsoC
7 1 2 3 4 5 invfun φFunXNY
8 7 funfnd φXNYFndomXNY
9 1 2 3 4 5 6 isoval φXIY=domXNY
10 9 fneq2d φXNYFnXIYXNYFndomXNY
11 8 10 mpbird φXNYFnXIY
12 df-rn ranXNY=domXNY-1
13 1 2 3 4 5 invsym2 φXNY-1=YNX
14 13 dmeqd φdomXNY-1=domYNX
15 1 2 3 5 4 6 isoval φYIX=domYNX
16 14 15 eqtr4d φdomXNY-1=YIX
17 12 16 eqtrid φranXNY=YIX
18 eqimss ranXNY=YIXranXNYYIX
19 17 18 syl φranXNYYIX
20 df-f XNY:XIYYIXXNYFnXIYranXNYYIX
21 11 19 20 sylanbrc φXNY:XIYYIX