Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invfval.b | |
|
invfval.n | |
||
invfval.c | |
||
invfval.x | |
||
invfval.y | |
||
isoval.n | |
||
Assertion | invf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | |
|
2 | invfval.n | |
|
3 | invfval.c | |
|
4 | invfval.x | |
|
5 | invfval.y | |
|
6 | isoval.n | |
|
7 | 1 2 3 4 5 | invfun | |
8 | 7 | funfnd | |
9 | 1 2 3 4 5 6 | isoval | |
10 | 9 | fneq2d | |
11 | 8 10 | mpbird | |
12 | df-rn | |
|
13 | 1 2 3 4 5 | invsym2 | |
14 | 13 | dmeqd | |
15 | 1 2 3 5 4 6 | isoval | |
16 | 14 15 | eqtr4d | |
17 | 12 16 | eqtrid | |
18 | eqimss | |
|
19 | 17 18 | syl | |
20 | df-f | |
|
21 | 11 19 20 | sylanbrc | |