Metamath Proof Explorer


Theorem invsym2

Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
Assertion invsym2 φXNY-1=YNX

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 eqid HomC=HomC
7 1 2 3 5 4 6 invss φYNXYHomCX×XHomCY
8 relxp RelYHomCX×XHomCY
9 relss YNXYHomCX×XHomCYRelYHomCX×XHomCYRelYNX
10 7 8 9 mpisyl φRelYNX
11 relcnv RelXNY-1
12 10 11 jctil φRelXNY-1RelYNX
13 1 2 3 4 5 invsym φfXNYggYNXf
14 vex gV
15 vex fV
16 14 15 brcnv gXNY-1ffXNYg
17 df-br gXNY-1fgfXNY-1
18 16 17 bitr3i fXNYggfXNY-1
19 df-br gYNXfgfYNX
20 13 18 19 3bitr3g φgfXNY-1gfYNX
21 20 eqrelrdv2 RelXNY-1RelYNXφXNY-1=YNX
22 12 21 mpancom φXNY-1=YNX