Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
invfval.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
3 |
|
invfval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
invfval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
invfval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
isoval.n |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
7 |
1 2 3 4 5
|
invfun |
⊢ ( 𝜑 → Fun ( 𝑋 𝑁 𝑌 ) ) |
8 |
7
|
funfnd |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) Fn dom ( 𝑋 𝑁 𝑌 ) ) |
9 |
1 2 3 4 5 6
|
isoval |
⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
10 |
9
|
fneq2d |
⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ↔ ( 𝑋 𝑁 𝑌 ) Fn dom ( 𝑋 𝑁 𝑌 ) ) ) |
11 |
8 10
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ) |
12 |
|
df-rn |
⊢ ran ( 𝑋 𝑁 𝑌 ) = dom ◡ ( 𝑋 𝑁 𝑌 ) |
13 |
1 2 3 4 5
|
invsym2 |
⊢ ( 𝜑 → ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝑁 𝑋 ) ) |
14 |
13
|
dmeqd |
⊢ ( 𝜑 → dom ◡ ( 𝑋 𝑁 𝑌 ) = dom ( 𝑌 𝑁 𝑋 ) ) |
15 |
1 2 3 5 4 6
|
isoval |
⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = dom ( 𝑌 𝑁 𝑋 ) ) |
16 |
14 15
|
eqtr4d |
⊢ ( 𝜑 → dom ◡ ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |
17 |
12 16
|
eqtrid |
⊢ ( 𝜑 → ran ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝐼 𝑋 ) ) |
18 |
|
eqimss |
⊢ ( ran ( 𝑋 𝑁 𝑌 ) = ( 𝑌 𝐼 𝑋 ) → ran ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑌 𝐼 𝑋 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ran ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑌 𝐼 𝑋 ) ) |
20 |
|
df-f |
⊢ ( ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ↔ ( ( 𝑋 𝑁 𝑌 ) Fn ( 𝑋 𝐼 𝑌 ) ∧ ran ( 𝑋 𝑁 𝑌 ) ⊆ ( 𝑌 𝐼 𝑋 ) ) ) |
21 |
11 19 20
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |