Step |
Hyp |
Ref |
Expression |
1 |
|
isisod.b |
|- B = ( Base ` C ) |
2 |
|
isisod.h |
|- H = ( Hom ` C ) |
3 |
|
isisod.o |
|- .x. = ( comp ` C ) |
4 |
|
isisod.i |
|- I = ( Iso ` C ) |
5 |
|
isisod.1 |
|- .1. = ( Id ` C ) |
6 |
|
isisod.c |
|- ( ph -> C e. Cat ) |
7 |
|
isisod.x |
|- ( ph -> X e. B ) |
8 |
|
isisod.y |
|- ( ph -> Y e. B ) |
9 |
|
isisod.f |
|- ( ph -> F e. ( X H Y ) ) |
10 |
|
isisod.g |
|- ( ph -> G e. ( Y H X ) ) |
11 |
|
isisod.gf |
|- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) |
12 |
|
isisod.fg |
|- ( ph -> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) |
13 |
|
simpr |
|- ( ( ph /\ g = G ) -> g = G ) |
14 |
13
|
oveq1d |
|- ( ( ph /\ g = G ) -> ( g ( <. X , Y >. .x. X ) F ) = ( G ( <. X , Y >. .x. X ) F ) ) |
15 |
14
|
eqeq1d |
|- ( ( ph /\ g = G ) -> ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |
16 |
13
|
oveq2d |
|- ( ( ph /\ g = G ) -> ( F ( <. Y , X >. .x. Y ) g ) = ( F ( <. Y , X >. .x. Y ) G ) ) |
17 |
16
|
eqeq1d |
|- ( ( ph /\ g = G ) -> ( ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) <-> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) ) |
18 |
15 17
|
anbi12d |
|- ( ( ph /\ g = G ) -> ( ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) <-> ( ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) ) ) |
19 |
10 18
|
rspcedv |
|- ( ph -> ( ( ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) -> E. g e. ( Y H X ) ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) ) ) |
20 |
11 12 19
|
mp2and |
|- ( ph -> E. g e. ( Y H X ) ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) ) |
21 |
3
|
oveqi |
|- ( <. X , Y >. .x. X ) = ( <. X , Y >. ( comp ` C ) X ) |
22 |
3
|
oveqi |
|- ( <. Y , X >. .x. Y ) = ( <. Y , X >. ( comp ` C ) Y ) |
23 |
1 2 6 4 7 8 9 5 21 22
|
dfiso2 |
|- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) ) ) |
24 |
20 23
|
mpbird |
|- ( ph -> F e. ( X I Y ) ) |