Metamath Proof Explorer


Theorem islln4

Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b B=BaseK
llnset.c C=K
llnset.a A=AtomsK
llnset.n N=LLinesK
Assertion islln4 KDXBXNpApCX

Proof

Step Hyp Ref Expression
1 llnset.b B=BaseK
2 llnset.c C=K
3 llnset.a A=AtomsK
4 llnset.n N=LLinesK
5 1 2 3 4 islln KDXNXBpApCX
6 5 baibd KDXBXNpApCX