Metamath Proof Explorer
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)
|
|
Ref |
Expression |
|
Hypotheses |
llnset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
llnset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
|
|
llnset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
|
llnset.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
|
Assertion |
islln4 |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
llnset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
llnset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 3 |
|
llnset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
llnset.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 5 |
1 2 3 4
|
islln |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) ) |
| 6 |
5
|
baibd |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |