Metamath Proof Explorer


Theorem iswrddm0

Description: A function with empty domain is a word. (Contributed by AV, 13-Oct-2018)

Ref Expression
Assertion iswrddm0 W:SWWordS

Proof

Step Hyp Ref Expression
1 fzo0 0..^0=
2 1 feq2i W:0..^0SW:S
3 iswrdi W:0..^0SWWordS
4 2 3 sylbir W:SWWordS