Metamath Proof Explorer


Theorem jaob

Description: Disjunction of antecedents. Compare Theorem *4.77 of WhiteheadRussell p. 121. (Contributed by NM, 30-May-1994) (Proof shortened by Wolf Lammen, 9-Dec-2012)

Ref Expression
Assertion jaob φχψφψχψ

Proof

Step Hyp Ref Expression
1 pm2.67-2 φχψφψ
2 olc χφχ
3 2 imim1i φχψχψ
4 1 3 jca φχψφψχψ
5 pm3.44 φψχψφχψ
6 4 5 impbii φχψφψχψ