Metamath Proof Explorer


Theorem konigsbergvtx

Description: The set of vertices of the Königsberg graph G . (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsbergvtx VtxG=03

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 1 2 opeq12i VE=03⟨“01020312122323”⟩
5 3 4 eqtri G=03⟨“01020312122323”⟩
6 5 fveq2i VtxG=Vtx03⟨“01020312122323”⟩
7 ovex 03V
8 s7cli ⟨“01020312122323”⟩WordV
9 opvtxfv 03V⟨“01020312122323”⟩WordVVtx03⟨“01020312122323”⟩=03
10 7 8 9 mp2an Vtx03⟨“01020312122323”⟩=03
11 6 10 eqtri VtxG=03