Metamath Proof Explorer


Theorem leat

Description: A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses leatom.b B=BaseK
leatom.l ˙=K
leatom.z 0˙=0.K
leatom.a A=AtomsK
Assertion leat KOPXBPAX˙PX=PX=0˙

Proof

Step Hyp Ref Expression
1 leatom.b B=BaseK
2 leatom.l ˙=K
3 leatom.z 0˙=0.K
4 leatom.a A=AtomsK
5 1 2 3 4 leatb KOPXBPAX˙PX=PX=0˙
6 5 biimpa KOPXBPAX˙PX=PX=0˙